-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
152 lines (142 loc) · 5.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import glob
import socket
import logging
import sys
import tensorflow as tf
import neuralgym as ng
from data_from_fnames import DataFromFNames
from mask_from_fnames import DataMaskFromFNames
from inpaint_model import InpaintCAModel
from inpaint_model_gc import InpaintGCModel
from trainer import Trainer
logger = logging.getLogger()
def multigpu_graph_def(model, data_mask_data, guides, config, gpu_id=0, loss_type='g'):
files = None
with tf.device('/cpu:0'):
if config.MASKFROMFILE:
images, masks = data_mask_data.data_pipeline(config.BATCH_SIZE)
else:
images = data_mask_data.data_pipeline(config.BATCH_SIZE)
masks = None
# if config.RETURN_FILE:
# images, files = data.data_pipeline(config.BATCH_SIZE)
# else:
# images = data.data_pipeline(config.BATCH_SIZE)
# if mask_data is not None:
# masks = mask_data.data_pipeline(config.BATCH_SIZE)
# else:
# masks = None
if loss_type == 'g':
_, _, losses = model.build_graph_with_losses(
images, masks, guides, config, summary=True, reuse=True)
else:
_, _, losses = model.build_graph_with_losses(
images, masks, guides, config, reuse=True)
if loss_type == 'g':
return losses['g_loss']
elif loss_type == 'd':
return losses['d_loss']
else:
raise ValueError('loss type is not supported.')
if __name__ == "__main__":
config = ng.Config(sys.argv[1])
if config.GPU_ID != -1:
ng.set_gpus(config.GPU_ID)
else:
ng.get_gpus(config.NUM_GPUS)
# training data
# Image Data
with open(config.DATA_FLIST[config.DATASET][0]) as f:
fnames = f.read().splitlines()
# # Mask Data
if config.MASKFROMFILE:
with open(config.DATA_FLIST[config.MASKDATASET][0]) as f:
mask_fnames = f.read().splitlines()
data_mask_data = DataMaskFromFNames(
list(zip(fnames, mask_fnames)), [config.IMG_SHAPES, config.MASK_SHAPES], random_crop=config.RANDOM_CROP)
images, masks = data_mask_data.data_pipeline(config.BATCH_SIZE)
else:
data_mask_data = DataFromFNames(
fnames, config.IMG_SHAPES, random_crop=config.RANDOM_CROP)
images = data_mask_data.data_pipeline(config.BATCH_SIZE)
masks = None
guides = None
# main model
model = InpaintGCModel()
g_vars, d_vars, losses = model.build_graph_with_losses(
images, masks, guides, config=config)
# validation images
if config.VAL:
with open(config.DATA_FLIST[config.DATASET][1]) as f:
val_fnames = f.read().splitlines()
with open(config.DATA_FLIST[config.MASKDATASET][1]) as f:
val_mask_fnames = f.read().splitlines()
# progress monitor by visualizing static images
for i in range(config.STATIC_VIEW_SIZE):
static_fnames = val_fnames[i:i+1]
if config.MASKFROMFILE:
static_mask_fnames = val_mask_fnames[i:i+1]
static_images, static_masks = DataMaskFromFNames(
list(zip(static_fnames,static_mask_fnames)), [config.IMG_SHAPES, config.MASK_SHAPES],
nthreads=1, random_crop=config.RANDOM_CROP).data_pipeline(1)
else:
static_images = DataFromFNames(
static_fnames, config.IMG_SHAPES, nthreads=1,
random_crop=config.RANDOM_CROP).data_pipeline(1)
static_masks = None
static_inpainted_images = model.build_static_infer_graph(
static_images, static_masks, static_masks, config, name='static_view/%d' % i)
# training settings
lr = tf.get_variable(
'lr', shape=[], trainable=False,
initializer=tf.constant_initializer(1e-4))
d_optimizer = tf.train.AdamOptimizer(lr, beta1=0.5, beta2=0.9)
g_optimizer = d_optimizer
# gradient processor
if config.GRADIENT_CLIP:
gradient_processor = lambda grad_var: (
tf.clip_by_average_norm(grad_var[0], config.GRADIENT_CLIP_VALUE),
grad_var[1])
else:
gradient_processor = None
# log dir
log_prefix = 'model_logs/' + '_'.join([
ng.date_uid(), socket.gethostname(), config.DATASET,
'MASKED' if config.GAN_WITH_MASK else 'NORMAL',
config.GAN,config.LOG_DIR])
# train discriminator with secondary trainer, should initialize before
# primary trainer.
discriminator_training_callback = ng.callbacks.SecondaryTrainer(
pstep=1,
optimizer=d_optimizer,
var_list=d_vars,
max_iters=5,
graph_def=multigpu_graph_def,
graph_def_kwargs={
'model': model, 'data_mask_data': data_mask_data, "guides":None, 'config': config, 'loss_type': 'd'},
)
# train generator with primary trainer
trainer = Trainer(
optimizer=g_optimizer,
var_list=g_vars,
max_iters=config.MAX_ITERS,
graph_def=multigpu_graph_def,
grads_summary=config.GRADS_SUMMARY,
gradient_processor=gradient_processor,
graph_def_kwargs={
'model': model, 'data_mask_data': data_mask_data, "guides":None, 'config': config, 'loss_type': 'g'},
spe=config.TRAIN_SPE,
log_dir=log_prefix,
)
# add all callbacks
if not config.PRETRAIN_COARSE_NETWORK:
trainer.add_callbacks(discriminator_training_callback)
trainer.add_callbacks([
ng.callbacks.WeightsViewer(),
ng.callbacks.ModelRestorer(trainer.context['saver'], dump_prefix='model_logs/'+config.MODEL_RESTORE+'/snap', optimistic=True),
ng.callbacks.ModelSaver(config.TRAIN_SPE, trainer.context['saver'], log_prefix+'/snap'),
ng.callbacks.SummaryWriter((config.VAL_PSTEPS//1), trainer.context['summary_writer'], tf.summary.merge_all()),
])
# launch training
trainer.train()