generated from automl/automl_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
140 lines (120 loc) · 5.04 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import sys
from typing import Sequence, Tuple
from torchvision.transforms import CenterCrop, ColorJitter, Compose, GaussianBlur, InterpolationMode, \
Normalize, RandomApply, RandomGrayscale, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor
from torchvision.datasets import CIFAR10, CIFAR100, ImageFolder, VOCDetection, INaturalist, Places365, \
FakeData, Flowers102, StanfordCars, INaturalist, Food101
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
CIFAR10_DEFAULT_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR10_DEFAULT_STD = (0.2023, 0.1994, 0.2010)
FLOWERS102_DEFAULT_MEAN = (0.4353, 0.3773, 0.2872)
FLOWERS102_DEFAULT_STD = (0.2966, 0.2455, 0.2698)
class MultiCropsTransform:
"""Take multiple random crops of one image as the query and key."""
def __init__(self, base_transform, num_crops):
self.base_transform = base_transform
self.num_crops = num_crops
def __call__(self, x):
images = []
params = []
for _ in range(self.num_crops):
img, p = self.base_transform(x)
images.append(img)
params.append(p)
return images, params
def make_normalize_transform(
mean: Sequence[float], std: Sequence[float],
) -> Normalize:
return Normalize(mean=mean, std=std)
def make_pretrain_transform(
crop_size: int = 224,
crop_scale: Tuple[float, float] = (0.2, 1.0),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
blur_prob: float = 0.5,
hflip_prob: float = 0.5,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
):
transforms_list = [
RandomResizedCrop(crop_size, scale=crop_scale, interpolation=interpolation),
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
RandomGrayscale(p=0.2),
]
if blur_prob > 0.0:
transforms_list.append(RandomApply([GaussianBlur(9, (0.1, 2.0))], p=blur_prob))
if hflip_prob > 0.0:
transforms_list.append(RandomHorizontalFlip(p=hflip_prob))
transforms_list.extend(
[
ToTensor(),
make_normalize_transform(mean=mean, std=std),
]
)
return Compose(transforms_list)
def make_classification_train_transform(
crop_size: int = 224,
crop_scale: Tuple[float, float] = (0.08, 1.0),
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
hflip_prob: float = 0.5,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
):
transforms_list = [
RandomResizedCrop(crop_size, scale=crop_scale, interpolation=interpolation),
RandomHorizontalFlip(p=hflip_prob),
ToTensor(),
make_normalize_transform(mean=mean, std=std)
]
return Compose(transforms_list)
def make_classification_val_transform(
resize_size: int = 256,
crop_size: int = 224,
interpolation: InterpolationMode = InterpolationMode.BILINEAR,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
):
transforms_list = [
Resize(resize_size, interpolation=interpolation),
CenterCrop(crop_size),
ToTensor(),
make_normalize_transform(mean=mean, std=std)
]
return Compose(transforms_list)
def make_dataset(
root: str,
dataset: str,
train: bool,
transform):
if dataset == 'CIFAR10':
return CIFAR10(root, download=False, train=train, transform=transform), 10
elif dataset == 'CIFAR100':
return CIFAR100(root, download=False, train=train, transform=transform), 100
elif dataset == 'Food101':
split = "train" if train else "test"
return Food101(root, download=False, split=split, transform=transform), 101
elif dataset == "Flowers102":
split = "train" if train else "test"
return Flowers102(root, download=False, split=split, transform=transform), 102
elif dataset == "StanfordCars":
split = "train" if train else "test"
return StanfordCars(root, download=True, split=split, transform=transform), 196
elif dataset == "inat21":
version = "2021_train_mini" if train else "2021_valid"
return INaturalist(root, download=False, version=version, transform=transform), 10000
elif dataset == "Places365":
split = "train-standard" if train else "val"
return Places365(root, download=False, split=split, transform=transform), 365
elif dataset == 'ImageNet':
root = os.path.join(root, 'train' if train else 'val')
dataset = ImageFolder(root, transform=transform)
return dataset, 1000
elif dataset == 'Test32':
dataset = FakeData(size=1000, image_size=(3, 32, 32), num_classes=10, transform=transform)
return dataset, 10
elif dataset == 'Test224':
dataset = FakeData(size=1000, image_size=(3, 224, 224), num_classes=1000, transform=transform)
return dataset, 1000
print(f"Does not support dataset: {dataset}")
sys.exit(1)