generated from automl/automl_template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuilder.py
102 lines (83 loc) · 3.14 KB
/
builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import torch.nn as nn
from models.vision_transformer import VisionTransformer
class SimSiam(nn.Module):
"""
Build a SimSiam model.
"""
def __init__(self, base_encoder, dim=2048, pred_dim=512, proj_layer=3, encoder_params={}):
"""
dim: feature dimension (default: 2048)
pred_dim: hidden dimension of the predictor (default: 512)
"""
super(SimSiam, self).__init__()
# create the encoder
self.encoder = base_encoder(**encoder_params)
# build an n-layer projector
input_dim = self.encoder.fc.weight.shape[1]
if isinstance(self.encoder, VisionTransformer):
hidden_dim = 2048
else:
hidden_dim = input_dim
layers = [
nn.Linear(input_dim, hidden_dim, bias=False),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True),
]
for _ in range(proj_layer - 2):
layers.extend([
nn.Linear(hidden_dim, hidden_dim, bias=False),
nn.BatchNorm1d(hidden_dim),
nn.ReLU(inplace=True),
])
layers.extend([
# self.encoder.fc,
nn.Linear(hidden_dim, dim, bias=False),
nn.BatchNorm1d(dim, affine=False)
])
self.encoder.fc = nn.Sequential(*layers) # output layer
# self.encoder.fc[-2].bias.requires_grad = False # hack: not use bias as it is followed by BN
# build a 2-layer predictor
self.predictor = nn.Sequential(nn.Linear(dim, pred_dim, bias=False),
nn.BatchNorm1d(pred_dim),
nn.ReLU(inplace=True), # hidden layer
nn.Linear(pred_dim, dim)) # output layer
def forward(self, x1, x2):
"""
Input:
x1: first views of images
x2: second views of images
Output:
p1, p2, z1, z2: predictors and targets of the network
See Sec. 3 of https://arxiv.org/abs/2011.10566 for detailed notations
"""
# compute features for one view
z1 = self.encoder(x1) # NxC
z2 = self.encoder(x2) # NxC
# projector / fc is not called in ViT's forward
if isinstance(self.encoder, VisionTransformer):
z1 = self.encoder.fc(z1)
z2 = self.encoder.fc(z2)
p1 = self.predictor(z1) # NxC
p2 = self.predictor(z2) # NxC
return p1, p2, z1.detach(), z2.detach()
@torch.no_grad()
def single_forward(self, x):
z = self.encoder(x)
# projector / fc is not called in ViT's forward
if isinstance(self.encoder, VisionTransformer):
z = self.encoder.fc(z)
p = self.predictor(z)
return p, z
@torch.no_grad()
def conv1_layer(self, x):
return self.encoder.conv1_layer(x)
@torch.no_grad()
def first_layer(self, x):
return self.encoder.first_layer(x)
@torch.no_grad()
def second_layer(self, x):
return self.encoder.second_layer(x)
@torch.no_grad()
def avgpool_layer(self, x):
return self.encoder.avgpool_layer(x)