|
| 1 | +\input{t00_template.tex} |
| 2 | + |
| 3 | +\usepackage[normalem]{ulem} |
| 4 | +\usepackage{pifont} |
| 5 | +\usepackage{relsize} |
| 6 | +\renewcommand{\lit}[1]{{\smaller\color{black!60}[#1]}} |
| 7 | +\title[AutoML: Practical]{AutoML: Practical Considerations} |
| 8 | +\subtitle{Introduction} |
| 9 | +\author[Janek Thomas]{Bernd Bischl \and Frank Hutter \and Lars Kotthoff\newline \and Marius Lindauer \and \underline{Janek Thomas} \and Joaquin Vanschoren} |
| 10 | + |
| 11 | +\begin{document} |
| 12 | + |
| 13 | +\maketitle |
| 14 | + |
| 15 | + |
| 16 | +%---------------------------------------------------------------------- |
| 17 | +%---------------------------------------------------------------------- |
| 18 | + |
| 19 | +\begin{frame}{From HPO to AutoML} |
| 20 | + So far we covered |
| 21 | + \begin{itemize} |
| 22 | + \item HPO as black-box optimization |
| 23 | + \begin{itemize} |
| 24 | + \item Grid- and random search, EAs, BO |
| 25 | + \end{itemize} |
| 26 | + \item Speedup techniques for HPO |
| 27 | + \begin{itemize} |
| 28 | + \item Multi-fidelity, meta-learning, ... |
| 29 | + \end{itemize} |
| 30 | + \item Multi-objective HPO |
| 31 | + \begin{itemize} |
| 32 | + \item NSGA-II, ParEGO, ... |
| 33 | + \end{itemize} |
| 34 | + \item Neural Architecture Search (NAS) |
| 35 | + \begin{itemize} |
| 36 | + \item One-Shot approaches, DARTS, ... |
| 37 | + \end{itemize} |
| 38 | + \end{itemize} |
| 39 | + |
| 40 | + \vspace{1cm} |
| 41 | + |
| 42 | + $\longrightarrow$ So far we haven't talked (much) about practical considerations. |
| 43 | + |
| 44 | +\end{frame} |
| 45 | + |
| 46 | +\begin{frame}{From HPO to AutoML} |
| 47 | + \begin{center} |
| 48 | + \includegraphics[width = 0.9\linewidth]{images/18_AutoML-Components-Overview-Infographic_corrected.png} |
| 49 | + \end{center} |
| 50 | +\end{frame} |
| 51 | + |
| 52 | +\begin{frame}{What is missing?} |
| 53 | + \begin{columns} |
| 54 | + \begin{column}{0.5\textwidth} |
| 55 | + What do I need to know as an AutoML user? |
| 56 | + \begin{itemize} |
| 57 | + \item \sout{Nothing, because it is automatic.} |
| 58 | + \item Understand limitations of AutoML and framework. |
| 59 | + \item Know how to interpret the results. |
| 60 | + \item Maybe: Data cleaning and feature extraction. |
| 61 | + \end{itemize} |
| 62 | + |
| 63 | + \vspace{1em} |
| 64 | + |
| 65 | + Ingredients to implement an AutoML system? |
| 66 | + \begin{itemize} |
| 67 | + \item HPO algorithm |
| 68 | + \item ML / Pipeline framework |
| 69 | + \item Parallelization / Multi-fidelity |
| 70 | + \item Process encapsulation and time capping |
| 71 | + \item ... |
| 72 | + % \item (Preprocessing) |
| 73 | + \end{itemize} |
| 74 | + \end{column}% |
| 75 | + \begin{column}{0.5\textwidth} |
| 76 | + \begin{center} |
| 77 | + |
| 78 | + Practitioners view: |
| 79 | + \scalebox{0.45}{ |
| 80 | + \input{tikz/true_automl_overview.tex} |
| 81 | + } |
| 82 | + \vspace{1em} |
| 83 | + |
| 84 | + Academic view: |
| 85 | + \scalebox{0.45}{ |
| 86 | + \input{tikz/automl_overview.tex} |
| 87 | + } |
| 88 | + |
| 89 | + \end{center} |
| 90 | + \end{column} |
| 91 | + \end{columns} |
| 92 | +\end{frame} |
| 93 | + |
| 94 | + |
| 95 | + |
| 96 | +\end{document} |
0 commit comments