Skip to content

Commit

Permalink
Merge pull request #43 from automl-edu/unify_slides
Browse files Browse the repository at this point in the history
Unify slides
  • Loading branch information
mlindauer authored Jul 1, 2021
2 parents 11fa2aa + 67c6dee commit 871826f
Show file tree
Hide file tree
Showing 27 changed files with 17 additions and 17 deletions.
6 changes: 3 additions & 3 deletions slides.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,18 +44,18 @@ def sort_paths(plist):
number1 = int(''.join(filter(str.isdigit, nxt_element.name)))
number2 = int(''.join(filter(str.isdigit, plist[j].name)))

if number1 >= 10:
if number1 > 10 and number1 <= 90:
number1 /= 10

if number2 >= 10:
if number2 > 10 and number2 <= 90:
number2 /= 10

while number2 > number1 and j >= 0:
plist[j+1] = plist[j]
j = j - 1
number2 = int(''.join(filter(str.isdigit, plist[j].name)))

if number2 >= 10:
if number2 > 10 and number2 <= 90:
number2 /= 10
plist[j+1] = nxt_element

Expand Down
Binary file added slides/autoML.pdf
Binary file not shown.
Binary file modified slides/w01_big_picture.pdf
Binary file not shown.
Binary file modified slides/w02_evaluation.pdf
Binary file not shown.
Binary file modified slides/w03_algorithm_selection.pdf
Binary file not shown.
Binary file modified slides/w04_hpo_basics.pdf
Binary file not shown.
Binary file modified slides/w05_gps.pdf
Binary file not shown.
Binary file modified slides/w06_hpo_bo.pdf
Binary file not shown.
Binary file modified slides/w07_hpo_speedup.pdf
Binary file not shown.
Binary file modified slides/w08_hpo_multicrit.pdf
Binary file not shown.
Binary file added slides/w09_nas.pdf
Binary file not shown.
Binary file modified slides/w11_l2l_hpo_control.pdf
Binary file not shown.
Binary file modified slides/w12_analysis.pdf
Binary file not shown.
Binary file modified slides/w13_beyond_automl.pdf
Binary file not shown.
Binary file modified slides/w15_wrap_up.pdf
Binary file not shown.
Binary file added w09_nas/images/AutoPytorch-ConfigSpace.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added w09_nas/images/AutoPytorch-ShapedResNet.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added w09_nas/images/AutoPytorch-performance.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added w09_nas/images/conv_fabric_1.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added w09_nas/images/conv_fabric_2.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added w09_nas/images/conv_fabric_3.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified w09_nas/t07_oneshot_nas.pdf
Binary file not shown.
6 changes: 3 additions & 3 deletions w09_nas/t07_oneshot_nas.tex
Original file line number Diff line number Diff line change
Expand Up @@ -28,10 +28,10 @@
\item The first type of one-shot models: \alert{convolutional neural fabrics} %/ \alert{lattice}

\centering
\only<2-5>{\includegraphics[width=0.7\textwidth]{images/conv_fabric_1.png}\\}
\only<6>{\hspace*{-0.91cm}\vspace*{0.3cm}\includegraphics[width=1.02\textwidth]{images/conv_fabric_3.png}\vspace*{-0.5cm}}
\only<2-5>{\includegraphics[width=0.7\textwidth]{images/conv_fabric_1.jpg}\\}
\only<6>{\hspace*{-0.91cm}\vspace*{0.3cm}\includegraphics[width=1.02\textwidth]{images/conv_fabric_3.jpg}\vspace*{-0.5cm}}

\only<2>{\bigskip\bigskip\includegraphics[width=0.7\textwidth]{images/conv_fabric_2.png}}
\only<2>{\bigskip\bigskip\includegraphics[width=0.7\textwidth]{images/conv_fabric_2.jpg}}
\pause
\medskip
\myit{
Expand Down
Binary file modified w09_nas/t09_NASlib.pdf
Binary file not shown.
10 changes: 5 additions & 5 deletions w09_nas/t09_NASlib.tex
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
\begin{document}
\maketitle
%----------------------------------------------------------------------
\myframe{Motivation for NASLib \litw{Zela et al., 2020}}{
\myframe{Motivation for NASLib \litw{Zela et al. 2020}}{

\alert{NASLib} is a \alert{framework} for easily implementing different NAS methods, aiming to:
\medskip
Expand Down Expand Up @@ -132,13 +132,13 @@
\myframe{Tabular benchmarks for one-shot NAS}{
\centering
\myit{
\item NAS-Bench-101 \lit{\href{https://arxiv.org/abs/1902.09635}{Ying et al. 2019}} is not directly compatible with one-shot NAS methods
\item NAS-Bench-101 \lit{\href{https://arxiv.org/pdf/1902.09635.pdf}{Ying et al. 2019}} is not directly compatible with one-shot NAS methods
\myit{
\item Mainly due to the constraint of at most 9 edges in the cell
}
\bigskip
\pause
\item \alert{NAS-Bench-1Shot1} \lit{\href{https://openreview.net/forum?id=SJx9ngStPH}{Zela et al. 2020}}
\item \alert{NAS-Bench-1Shot1} \lit{\href{https://openreview.net/pdf?id=SJx9ngStPH}{Zela et al. 2020}}
\myit{
\item[-] \alert{3 sub-spaces of NAS-Bench-101} that are compatible with one-shot methods
\myit{
Expand All @@ -148,7 +148,7 @@
}
\bigskip
\pause
\item \alert{NAS-Bench-201} \lit{\href{https://openreview.net/forum?id=HJxyZkBKDr}{Dong and Yang. 2020}}
\item \alert{NAS-Bench-201} \lit{\href{https://openreview.net/pdf?id=HJxyZkBKDr}{Dong and Yang. 2020}}
\myit{
% \item[-] Same graph representation as in DARTS
\item[-] Much smaller than NAS-Bench-101 and largest NAS-Bench-1Shot1 subspace
Expand All @@ -167,7 +167,7 @@
\myit{
\item<1-> NAS-Bench-201 is already integrated in NASLib and we can run any one-shot optimizer on it
\medskip
\item<2-> We can also combine random perturbations \lit{\href{https://arxiv.org/pdf/2002.05283.pdf}{Chen and Hsieh, 2020}} with any one-shot optimizer
\item<2-> We can also combine random perturbations \lit{\href{https://arxiv.org/pdf/2002.05283.pdf}{Chen and Hsieh. 2020}} with any one-shot optimizer
\medskip
\item<3-> We can also evaluate black-box optimizers cheaply with a tabular benchmark
}
Expand Down
Binary file added w09_nas/t10_practical_recommendations.pdf
Binary file not shown.
12 changes: 6 additions & 6 deletions w09_nas/t10_practical_recommendations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -62,14 +62,14 @@
\item[-] If the compute budget suffices, \alert{optimize them jointly}, e.g., using BOHB
\myit{
\item[+] Auto-PyTorch Tabular \lit{\href{https://github.com/automl/Auto-PyTorch}{Zimmer,\,Lindauer\,\& Hutter, 2020}}
\item[+] Auto-RL \lit{\href{https://arxiv.org/abs/1812.11951}{Runge et al, 2019}}
\item[+] Auto-RL \lit{\href{https://arxiv.org/pdf/1812.11951.pdf}{Runge et al. 2019}}
}
\medskip
\pause
\item[-] Else
\myit{
\item[+] If you have decent hyperparameters:\\
\alert{run NAS, followed by HPO for fine-tuning} \lit{\href{https://arxiv.org/abs/1905.07443}{Saikat et al, 2019}}
\alert{run NAS, followed by HPO for fine-tuning} \lit{\href{https://arxiv.org/pdf/1905.07443.pdf}{Saikat et al. 2019}}
\smallskip
\pause
\item[+] If you don't have decent hyperparameters: \alert{first run HPO} to get competitive
Expand Down Expand Up @@ -110,18 +110,18 @@

\column{0.29\textwidth}
\onslide<1->{
\includegraphics[width=\linewidth]{images/AutoPytorch-ShapedResNet.png}\\
\includegraphics[width=\linewidth]{images/AutoPytorch-ShapedResNet.jpg}\\
}
\column{0.42\textwidth}
\vspace*{-0.7cm}
\onslide<1->{
\begin{center}
\includegraphics[width=0.9\linewidth]{images/AutoPytorch-ConfigSpace.png}
\includegraphics[width=0.9\linewidth]{images/AutoPytorch-ConfigSpace.jpg}
\end{center}
}
\onslide<5->{
\vspace*{-0.3cm}\hspace*{-1.1cm}
\includegraphics[width=1.1\linewidth]{images/AutoPytorch-performance.png}
\includegraphics[width=1.1\linewidth]{images/AutoPytorch-performance.jpg}
% \end{center}
}

Expand Down Expand Up @@ -158,7 +158,7 @@
}
\onslide<4->{
\myit{
\item Both NAS and HPO improved the state of the art \lit{\href{https://arxiv.org/abs/1905.07443}{Saikat et al, 2019}}:
\item Both NAS and HPO improved the state of the art \lit{\href{https://arxiv.org/pdf/1905.07443.pdf}{Saikat et al. 2019}}:
\myit{
\item End-point-error (EPE) on Sintel dataset: \alert{2.36 $\rightarrow$ 2.14 (by DARTS)}
\item Subsequent HPO: \alert{2.14 $\rightarrow$ 1.94 (by BOHB)}
Expand Down

0 comments on commit 871826f

Please sign in to comment.