-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathInterpolated_gateway.py
220 lines (181 loc) · 7.1 KB
/
Interpolated_gateway.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import bpy
import starfish
from mathutils import Euler
from starfish import utils
from starfish import postprocessing
import json
import math
import time
import os
import sys
import boto3
import shortuuid
import csv
from collections import defaultdict
import random
def nm_to_bu(nmi):
return nmi * 1852 * SCALE # convert from nmi to blender units
def deg_to_rad(deg):
return deg * np.pi / 180 # convert from degrees to radians
LABEL_MAP = {
'gateway': (206, 0, 206)
}
#********************************************************************************************
############################################
#The following is the main code for image generation
############################################
SCALE = 17
def generate(ds_name, tags_list):
start_time = time.time()
#check if folder exists in render, if not, create folder
try:
os.mkdir("render/" + ds_name)
except Exception:
pass
data_storage_path = os.getcwd() + "/render/" + ds_name
# switch to correct scene
bpy.context.window.scene = bpy.data.scenes['Real']
# remove all animation
for obj in bpy.context.scene.objects:
obj.animation_data_clear()
# set up file outputs
output_node = bpy.data.scenes['Render'].node_tree.nodes["File Output"]
output_node.base_path = data_storage_path
np.random.seed(5)
waypoints_dict = {
'distance': [#0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
6,
3,
1,
3,
6,
3,
1
]
,
'offset': [
(0.25, 0.25),
(0.5, 0.5),
(0.75, 0.75),
(0.7, 0.3),
(0.5, 0.25),
(0.35, 0.5),
(0.25, 0.5)
],
'background': [
(0, -90, 0),
(0, -105, 15),
(0, -120, 30),
(0, -120, 15),
(0, -120, 0),
(0, -105, 0),
(0, -90, 0)
],
'pose': np.random.rand(7, 3) * 360,
'lighting': np.random.rand(7, 3) * 360
}
waypoints = []
for vals in zip(*waypoints_dict.values()):
d = dict(zip(waypoints_dict.keys(), vals))
waypoints.append(starfish.Frame(
distance=nm_to_bu(d['distance']),
offset=d['offset'],
background=Euler(list(map(deg_to_rad, d['background']))),
pose=Euler(list(map(deg_to_rad, d['pose']))),
lighting=Euler(list(map(deg_to_rad, d['lighting'])))
))
counts = [300] * 7
for scene in bpy.data.scenes:
scene.unit_settings.scale_length = 1 / SCALE
for i, frame in enumerate(starfish.Sequence.interpolated(waypoints, counts)):
bpy.context.scene.frame_set(0)
frame.setup(bpy.data.scenes['Real'], bpy.data.objects["Gateway"], bpy.data.objects["Camera"], bpy.data.objects["Sun"])
#create name for the current image (unique to that image)
name = str(i).zfill(5)
output_node.file_slots[0].path = "image_" + "#" + str(name)
output_node.file_slots[1].path = "mask_" + "#" + str(name)
# render
bpy.ops.render.render(scene="Render")
# Tag the pictures
frame.tags = tags_list
# add metadata to frame
frame.sequence_name = ds_name
mask_filepath = os.path.join(output_node.base_path, "mask_0" + str(name) + ".png")
meta_filepath = os.path.join(output_node.base_path, "meta_0" + str(name) + ".json")
# run color normalization with labels plus black background
postprocessing.normalize_mask_colors(mask_filepath, list(LABEL_MAP.values()) + [(0, 0, 0)])
# get bbox and centroid and add them to metadata
frame.bboxes = postprocessing.get_bounding_boxes_from_mask(mask_filepath, LABEL_MAP)
frame.centroids = postprocessing.get_centroids_from_mask(mask_filepath, LABEL_MAP)
with open(meta_filepath, "w") as f:
f.write(frame.dumps())
print("===========================================" + "\r")
time_taken = time.time() - start_time
print("------Time Taken: %s seconds----------" %(time_taken) + "\r")
print("Data stored at: " + data_storage_path)
bpy.ops.wm.quit_blender()
############################
#The following is the main code for upload
############################
def upload(ds_name, bucket_name):
print("\n\n______________STARTING UPLOAD_________")
# Create an S3 client
s3 = boto3.client('s3')
print("...begining upload to %s..." % bucket_name)
try:
files =next(os.walk(os.getcwd() + "/render/" + ds_name))[2]
except Exception:
print("...No data set named " + ds_name + " found in starfish/render. Please generate images with that folder name or move existing folder into render folder")
exit()
#count number of files
num_files = 0
# For every file in directory
for file in files:
#ignore hidden files
if not file.startswith('.') and not file.startswith('truth'):
#upload to s3
print("uploading...")
sys.stdout.write("\033[F")
local_file = os.path.join(os.getcwd() + "/render/" + ds_name, file)
s3.upload_file(local_file, bucket_name, ds_name + "/" + file)
num_files = num_files + 1
print("...finished uploading...%d files uploaded..." % num_files)
def validate_bucket_name(bucket_name):
s3t = boto3.resource('s3')
#check if bucket exits. If not return false
if s3t.Bucket(bucket_name).creation_date is None:
print("...Bucket does not exist, enter valid bucket name...")
return False
else:
#if exists, return true
print("...bucket exists....")
return True
#############################################
#Run user input data then run generation/upload
#############################################
def main():
try:
os.mkdir("render")
except Exception:
pass
yes = {'yes', 'y', 'Y'}
runGen = input("*> Generate images?[y/n]: ")
runUpload = input("*> Would you like to upload these images to AWS? [y/n]: ")
if runUpload in yes:
bucket_name = input("*> Enter Bucket name: ")
#check if bucket name valid
while not validate_bucket_name(bucket_name):
bucket_name = input("*> Enter Bucket name: ")
print(" Note: if you want to upload to AWS but not generate images, move folder with images to 'render' and enter folder name. If the folder name exists, images will be stored in that directory")
dataset_name = input("*> Enter name for folder: ")
print(" Note: rendered images will be stored in a directory called 'render' in the same local directory this script is located under the directory name you specify.")
tags = input("*> Enter tags for the batch seperated with space: ")
tags_list = tags.split();
if runGen in yes:
generate(dataset_name, tags_list)
if runUpload in yes:
upload(dataset_name, bucket_name)
print("______________DONE EXECUTING______________")
if __name__ == "__main__":
main()