-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathii_benchmark.py
298 lines (236 loc) · 9.46 KB
/
ii_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report
from transformers import BertTokenizer, BertModel
from trainer import LIMTrainer, BERTLIMTrainer
from LIM_deep_neural_classifier import LIMDeepNeuralClassifier
from LIM_bert import LIMBERTClassifier
import dataset_equality
import dataset_nli
import utils
class IIBenchmark:
def __init__(
self,
variable_names,
data_parameters={},
model_parameters={},
training_parameters={},
seed=42
):
self.variable_names = variable_names
self.data_parameters = data_parameters
self.model_parameters = model_parameters
self.training_parameters = training_parameters
self.seed = seed
utils.fix_random_seeds()
self.train_dataset, self.test_dataset = self.load_datasets()
def load_datasets(self):
return
def create_model(self):
return
def create_classifier(self, model):
return
def evaluate(self, model, alignment):
"""
Evaluates an alignment for a Layered Intervenable Model (LIM) on the
interchange-interventions objective.
Returns
--------
tuple of size = (number of variable, 2), with the following format:
(
(y_true for V1 alignment, y_pred for V1 alignment),
(y_true for V2 alignment, y_pred for V2 alignment),
...
)
"""
result = []
for i in range(len(self.test_dataset)):
X_base_test, y_base_test, X_sources_test, y_IIT_test, interventions = self.test_dataset[i]
LIM_trainer = self.create_classifier(model)
IIT_preds = LIM_trainer.iit_predict(X_base_test,
X_sources_test,
interventions,
alignment, device='cpu')
result += [(y_IIT_test, IIT_preds)]
return tuple(result)
def display_evaluations(self, evaluations):
"""
Displays evaluations from `evaluate` function.
"""
for e, var_name in zip(evaluations, VARIABLE_NAMES):
print(f'II-Evaluation on {var_name}')
print(classification_report(*e))
def train_model(self, variable, alignment):
"""
Trains an LIM model using IIT on a variable (V1, V2, or BOTH)
and an alignment.
Used to train models for benchmark.
"""
# set up model
LIM = self.create_model()
# wrap trainer around model
LIM_trainer = self.create_classifier(LIM)
# choose training data based off of intervention variable (V1, V2, or both)
X_base_train, y_base_train, X_sources_train, y_IIT_train, interventions = self.train_dataset[variable]
# train model
_ = LIM_trainer.fit(
X_base_train,
y_base_train,
iit_data=(
X_sources_train,
y_IIT_train,
interventions
),
intervention_ids_to_coords=alignment
)
# return model
return LIM_trainer.model
def get_alignments_for_layer(self, layer):
possible_alignments = [
{'layer': layer, 'start': i, 'end': i + 1}
for i in range(self.model_parameters['hidden_dim'])
]
return possible_alignments
def sample_alignments(self, layers=[1, 2], sizes=[2, 4, 6, 8], n_samples=10):
samples = []
for _ in range(n_samples):
# 1. sample layer for all variables
layer = np.random.choice(layers)
possible_alignments = self.get_alignments_for_layer(layer)
# 2. sample span sizes for each variable
# NOTE: assume that max in sizes is less than or equal to half of hidden dimension
n_v1 = np.random.choice(sizes)
n_v2 = np.random.choice(sizes)
# 3. sample alignments for the two variables
sample = np.random.choice(a=possible_alignments, size=(n_v1 + n_v2))
samples.append({
V1: sample[:n_v1],
V2: sample[n_v1:],
BOTH: sample
})
return samples
def train_models(self, alignments, name='equality'):
"""
Train benchmark models using IIT for each model in the list of alignments.
For each alignment, trains 3 separate models: aligning only V1, aligning only V2, and aligning BOTH.
"""
for alignment in alignments:
for i, variable in enumerate(self.variable_names):
LIM_model = self.train_model(i, alignment)
torch.save(
LIM_model.state_dict(),
f"./models/{name}-{variable}-{i:0>2d}.pt"
)
def load_model(self, path):
"""
Load LIM model from saved path.
Assumes all model parameters have been kept constants.
"""
LIM_model = self.create_model()
weights = torch.load(path)
LIM_model.load_state_dict(state_dict=weights)
return LIM_model
class IIBenchmarkEquality(IIBenchmark):
def __init__(
self,
variable_names=['V1', 'V2', 'BOTH'],
data_parameters={
'train_size': 100000, 'test_size': 1000, 'embedding_dim': 4
},
model_parameters={
'num_layers': 3, 'hidden_dim': 16, 'hidden_activation': torch.nn.ReLU(), 'input_dim': 16, 'n_classes': 2
},
training_parameters={
'warm_start': True, 'max_iter': 10, 'batch_size': 64, 'n_iter_no_change': 10000,
'shuffle_train': False, 'eta': 0.001
},
seed=42
):
super().__init__(
variable_names,
data_parameters,
model_parameters,
training_parameters,
seed
)
def load_datasets(self):
embedding_dim = self.data_parameters['embedding_dim']
train_size = self.data_parameters['train_size']
test_size = self.data_parameters['test_size']
iit_equality_train_v1 = dataset_equality.get_IIT_equality_dataset("V1", embedding_dim, train_size)
iit_equality_train_v2 = dataset_equality.get_IIT_equality_dataset("V2", embedding_dim, train_size)
iit_equality_train_both = dataset_equality.get_IIT_equality_dataset_both(embedding_dim, train_size)
iit_equality_train = [iit_equality_train_v1, iit_equality_train_v2, iit_equality_train_both]
iit_equality_test_v1 = dataset_equality.get_IIT_equality_dataset("V1", embedding_dim, test_size)
iit_equality_test_v2 = dataset_equality.get_IIT_equality_dataset("V2", embedding_dim, test_size)
iit_equality_test_both = dataset_equality.get_IIT_equality_dataset_both(embedding_dim, test_size)
iit_equality_test = [iit_equality_test_v1, iit_equality_test_v2, iit_equality_test_both]
return iit_equality_train, iit_equality_test
def create_model(self):
return LIMDeepNeuralClassifier(
**self.model_parameters
)
def create_classifier(self, model):
return LIMTrainer(
model,
**self.training_parameters
)
class IIBenchmarkMoNli(IIBenchmark):
def __init__(
self,
variable_names=['LEX'],
data_parameters={
'train_size': 10000, 'test_size': 10000
},
model_parameters={
'weights_name': 'bert-base-uncased', 'max_length': 40, 'n_classes': 2, 'hidden_dim': 768
},
training_parameters={
'warm_start': True, 'max_iter': 5, 'batch_size': 16, 'n_iter_no_change': 10000,
'shuffle_train': False, 'eta': 0.0001
},
seed=42
):
super().__init__(
variable_names,
data_parameters,
model_parameters,
training_parameters,
seed
)
def load_datasets(self):
bert_tokenizer = BertTokenizer.from_pretrained(self.model_parameters['weights_name'])
def encoding(X):
if X[0][-1] != ".":
input = [". ".join(X)]
else:
input = [" ".join(X)]
data = bert_tokenizer.batch_encode_plus(
input,
max_length=self.model_parameters['max_length'],
add_special_tokens=True,
padding='max_length',
truncation=True,
return_attention_mask=True)
indices = torch.tensor(data['input_ids'])
mask = torch.tensor(data['attention_mask'])
return (indices, mask)
iit_MoNLI_train = dataset_nli.get_IIT_MoNLI_dataset(encoding, 'train', self.data_parameters['train_size'])
iit_MoNLI_test = dataset_nli.get_IIT_MoNLI_dataset(encoding, 'test', self.data_parameters['test_size'])
return iit_MoNLI_train, iit_MoNLI_test
def create_model(self):
bert = BertModel.from_pretrained(self.model_parameters['weights_name'])
return LIMBERTClassifier(
self.model_parameters['n_classes'],
bert,
self.model_parameters['max_length'],
debug=self.model_parameters['debug'],
target_dims = self.model_parameters['target_dims'],
target_layers=self.model_parameters['target_layers'],
)
def create_classifier(self, model):
return BERTLIMTrainer(
model,
**self.training_parameters
)