-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathreduce.go
230 lines (216 loc) · 4.97 KB
/
reduce.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
package rolling
import (
"math"
"sort"
"sync"
)
// Count returns the number of elements in a window.
func Count(w Window) float64 {
result := 0
for _, bucket := range w {
result += len(bucket)
}
return float64(result)
}
// Sum the values within the window.
func Sum(w Window) float64 {
var result = 0.0
for _, bucket := range w {
for _, p := range bucket {
result = result + p
}
}
return result
}
// Avg the values within the window.
func Avg(w Window) float64 {
var result = 0.0
var count = 0.0
for _, bucket := range w {
for _, p := range bucket {
result = result + p
count = count + 1
}
}
return result / count
}
// Min the values within the window.
func Min(w Window) float64 {
var result = 0.0
var started = true
for _, bucket := range w {
for _, p := range bucket {
if started {
result = p
started = false
continue
}
if p < result {
result = p
}
}
}
return result
}
// Max the values within the window.
func Max(w Window) float64 {
var result = 0.0
var started = true
for _, bucket := range w {
for _, p := range bucket {
if started {
result = p
started = false
continue
}
if p > result {
result = p
}
}
}
return result
}
// Percentile returns an aggregating function that computes the
// given percentile calculation for a window.
func Percentile(perc float64) func(w Window) float64 {
var values []float64
var lock = &sync.Mutex{}
return func(w Window) float64 {
lock.Lock()
defer lock.Unlock()
values = values[:0]
for _, bucket := range w {
values = append(values, bucket...)
}
if len(values) < 1 {
return 0.0
}
sort.Float64s(values)
var position = (float64(len(values))*(perc/100) + .5) - 1
var k = int(math.Floor(position))
var f = math.Mod(position, 1)
if f == 0.0 {
return values[k]
}
var plusOne = k + 1
if plusOne > len(values)-1 {
plusOne = k
}
return ((1 - f) * values[k]) + (f * values[plusOne])
}
}
// FastPercentile implements the pSquare percentile estimation
// algorithm for calculating percentiles from streams of data
// using fixed memory allocations.
func FastPercentile(perc float64) func(w Window) float64 {
perc = perc / 100.0
return func(w Window) float64 {
var initalObservations = make([]float64, 0, 5)
var q [5]float64
var n [5]int
var nPrime [5]float64
var dnPrime [5]float64
var observations uint64
for _, bucket := range w {
for _, v := range bucket {
observations = observations + 1
// Record first five observations
if observations < 6 {
initalObservations = append(initalObservations, v)
continue
}
// Before proceeding beyond the first five, process them.
if observations == 6 {
bubbleSort(initalObservations)
for offset := range q {
q[offset] = initalObservations[offset]
n[offset] = offset
}
nPrime[0] = 0
nPrime[1] = 2 * perc
nPrime[2] = 4 * perc
nPrime[3] = 2 + 2*perc
nPrime[4] = 4
dnPrime[0] = 0
dnPrime[1] = perc / 2
dnPrime[2] = perc
dnPrime[3] = (1 + perc) / 2
dnPrime[4] = 1
}
var k int // k is the target cell to increment
switch {
case v < q[0]:
q[0] = v
k = 0
case q[0] <= v && v < q[1]:
k = 0
case q[1] <= v && v < q[2]:
k = 1
case q[2] <= v && v < q[3]:
k = 2
case q[3] <= v && v <= q[4]:
k = 3
case v > q[4]:
q[4] = v
k = 3
}
for x := k + 1; x < 5; x = x + 1 {
n[x] = n[x] + 1
}
nPrime[0] = nPrime[0] + dnPrime[0]
nPrime[1] = nPrime[1] + dnPrime[1]
nPrime[2] = nPrime[2] + dnPrime[2]
nPrime[3] = nPrime[3] + dnPrime[3]
nPrime[4] = nPrime[4] + dnPrime[4]
for x := 1; x < 4; x = x + 1 {
var d = nPrime[x] - float64(n[x])
if (d >= 1 && (n[x+1]-n[x]) > 1) ||
(d <= -1 && (n[x-1]-n[x]) < -1) {
var s = sign(d)
var si = int(s)
var nx = float64(n[x])
var nxPlusOne = float64(n[x+1])
var nxMinusOne = float64(n[x-1])
var qx = q[x]
var qxPlusOne = q[x+1]
var qxMinusOne = q[x-1]
var parab = q[x] + (s/(nxPlusOne-nxMinusOne))*((nx-nxMinusOne+s)*(qxPlusOne-qx)/(nxPlusOne-nx)+(nxPlusOne-nx-s)*(qx-qxMinusOne)/(nx-nxMinusOne))
if qxMinusOne < parab && parab < qxPlusOne {
q[x] = parab
} else {
q[x] = q[x] + s*((q[x+si]-q[x])/float64(n[x+si]-n[x]))
}
n[x] = n[x] + si
}
}
}
}
if observations < 1 {
return 0.0
}
// If we have less than five values then degenerate into a max function.
// This is a reasonable value for data sets this small.
if observations < 5 {
bubbleSort(initalObservations)
return initalObservations[len(initalObservations)-1]
}
return q[2]
}
}
func sign(v float64) float64 {
if v < 0 {
return -1
}
return 1
}
// using bubblesort because we're only working with datasets of 5 or fewer
// elements.
func bubbleSort(s []float64) {
for range s {
for x := 0; x < len(s)-1; x = x + 1 {
if s[x] > s[x+1] {
s[x], s[x+1] = s[x+1], s[x]
}
}
}
}