-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path236.lowest-common-ancestor-of-a-binary-tree.py
104 lines (91 loc) · 2.45 KB
/
236.lowest-common-ancestor-of-a-binary-tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#
# @lc app=leetcode id=236 lang=python3
#
# [236] Lowest Common Ancestor of a Binary Tree
#
# https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/description/
#
# algorithms
# Medium (65.55%)
# Likes: 17301
# Dislikes: 450
# Total Accepted: 2M
# Total Submissions: 3.1M
# Testcase Example: '[3,5,1,6,2,0,8,null,null,7,4]\n5\n1'
#
# Given a binary tree, find the lowest common ancestor (LCA) of two given nodes
# in the tree.
#
# According to the definition of LCA on Wikipedia: “The lowest common ancestor
# is defined between two nodes p and q as the lowest node in T that has both p
# and q as descendants (where we allow a node to be a descendant of
# itself).”
#
#
# Example 1:
#
#
# Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
# Output: 3
# Explanation: The LCA of nodes 5 and 1 is 3.
#
#
# Example 2:
#
#
# Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
# Output: 5
# Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant
# of itself according to the LCA definition.
#
#
# Example 3:
#
#
# Input: root = [1,2], p = 1, q = 2
# Output: 1
#
#
#
# Constraints:
#
#
# The number of nodes in the tree is in the range [2, 10^5].
# -10^9 <= Node.val <= 10^9
# All Node.val are unique.
# p != q
# p and q will exist in the tree.
#
#
#
# @lc code=start
# Definition for a binary tree node.
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
self.p_anc = []
self.q_anc = []
def dfs(node, path):
if not node:
return
# 현재 경로를 새로운 리스트로 전달 (복사)
new_path = path + [node]
# print(new_path)
if node == p:
self.p_anc = new_path # p의 경로 저장
if node == q:
self.q_anc = new_path # q의 경로 저장
dfs(node.left, new_path)
dfs(node.right, new_path)
dfs(root, [])
# print("p의 조상 노드들:", [node.val for node in self.p_anc])
# print("q의 조상 노드들:", [node.val for node in self.q_anc])
# 뒤에서부터 공통된 조상을 찾음
for i in self.p_anc[::-1]: # 뒤에서부터 순회
if i in self.q_anc:
return i # 최저 공통 조상 반환
# @lc code=end