forked from gwtaylor/theano-rnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrnn_minibatch.py
943 lines (787 loc) · 38.7 KB
/
rnn_minibatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
""" Vanilla RNN
Parallelizes scan over sequences by using mini-batches.
@author Graham Taylor
"""
import numpy as np
import theano
import theano.tensor as T
from sklearn.base import BaseEstimator
import logging
import time
import os
import datetime
import cPickle as pickle
logger = logging.getLogger(__name__)
import matplotlib.pyplot as plt
plt.ion()
mode = theano.Mode(linker='cvm')
#mode = 'DEBUG_MODE'
class RNN(object):
""" Recurrent neural network class
Supported output types:
real : linear output units, use mean-squared error
binary : binary output units, use cross-entropy error
softmax : single softmax out, use cross-entropy error
"""
def __init__(self, input, n_in, n_hidden, n_out, activation=T.tanh,
output_type='real'):
self.input = input
self.activation = activation
self.output_type = output_type
self.batch_size = T.iscalar()
# theta is a vector of all trainable parameters
# it represents the value of W, W_in, W_out, h0, bh, by
theta_shape = n_hidden ** 2 + n_in * n_hidden + n_hidden * n_out + \
n_hidden + n_hidden + n_out
self.theta = theano.shared(value=np.zeros(theta_shape,
dtype=theano.config.floatX))
# Parameters are reshaped views of theta
param_idx = 0 # pointer to somewhere along parameter vector
# recurrent weights as a shared variable
self.W = self.theta[param_idx:(param_idx + n_hidden ** 2)].reshape(
(n_hidden, n_hidden))
self.W.name = 'W'
W_init = np.asarray(np.random.uniform(size=(n_hidden, n_hidden),
low=-0.01, high=0.01),
dtype=theano.config.floatX)
param_idx += n_hidden ** 2
# input to hidden layer weights
self.W_in = self.theta[param_idx:(param_idx + n_in * \
n_hidden)].reshape((n_in, n_hidden))
self.W_in.name = 'W_in'
W_in_init = np.asarray(np.random.uniform(size=(n_in, n_hidden),
low=-0.01, high=0.01),
dtype=theano.config.floatX)
param_idx += n_in * n_hidden
# hidden to output layer weights
self.W_out = self.theta[param_idx:(param_idx + n_hidden * \
n_out)].reshape((n_hidden, n_out))
self.W_out.name = 'W_out'
W_out_init = np.asarray(np.random.uniform(size=(n_hidden, n_out),
low=-0.01, high=0.01),
dtype=theano.config.floatX)
param_idx += n_hidden * n_out
self.h0 = self.theta[param_idx:(param_idx + n_hidden)]
self.h0.name = 'h0'
h0_init = np.zeros((n_hidden,), dtype=theano.config.floatX)
param_idx += n_hidden
self.bh = self.theta[param_idx:(param_idx + n_hidden)]
self.bh.name = 'bh'
bh_init = np.zeros((n_hidden,), dtype=theano.config.floatX)
param_idx += n_hidden
self.by = self.theta[param_idx:(param_idx + n_out)]
self.by.name = 'by'
by_init = np.zeros((n_out,), dtype=theano.config.floatX)
param_idx += n_out
assert(param_idx == theta_shape)
# for convenience
self.params = [self.W, self.W_in, self.W_out, self.h0, self.bh,
self.by]
# shortcut to norms (for monitoring)
self.l2_norms = {}
for param in self.params:
self.l2_norms[param] = T.sqrt(T.sum(param ** 2))
# initialize parameters
# DEBUG_MODE gives division by zero error when we leave parameters
# as zeros
self.theta.set_value(np.concatenate([x.ravel() for x in
(W_init, W_in_init, W_out_init, h0_init, bh_init, by_init)]))
self.theta_update = theano.shared(
value=np.zeros(theta_shape, dtype=theano.config.floatX))
# recurrent function (using tanh activation function) and linear output
# activation function
def step(x_t, h_tm1):
h_t = self.activation(T.dot(x_t, self.W_in) + \
T.dot(h_tm1, self.W) + self.bh)
y_t = T.dot(h_t, self.W_out) + self.by
return h_t, y_t
# the hidden state `h` for the entire sequence, and the output for the
# entire sequence `y` (first dimension is always time)
# Note the implementation of weight-sharing h0 across variable-size
# batches using T.ones multiplying h0
[self.h, self.y_pred], _ = theano.scan(step,
sequences=self.input,
outputs_info=[T.alloc(self.h0, self.input.shape[1],
n_hidden), None])
# outputs_info=[T.ones(shape=(self.input.shape[1],
# self.h0.shape[0])) * self.h0, None])
# L1 norm ; one regularization option is to enforce L1 norm to
# be small
self.L1 = 0
self.L1 += abs(self.W.sum())
self.L1 += abs(self.W_in.sum())
self.L1 += abs(self.W_out.sum())
# square of L2 norm ; one regularization option is to enforce
# square of L2 norm to be small
self.L2_sqr = 0
self.L2_sqr += (self.W ** 2).sum()
self.L2_sqr += (self.W_in ** 2).sum()
self.L2_sqr += (self.W_out ** 2).sum()
if self.output_type == 'real':
self.loss = lambda y: self.mse(y)
elif self.output_type == 'binary':
# push through sigmoid
self.p_y_given_x = T.nnet.sigmoid(self.y_pred) # apply sigmoid
self.y_out = T.round(self.p_y_given_x) # round to {0,1}
self.loss = lambda y: self.nll_binary(y)
elif self.output_type == 'softmax':
# push through softmax, computing vector of class-membership
# probabilities in symbolic form
#
# T.nnet.softmax will not operate on T.tensor3 types, only matrices
# We take our n_steps x n_seq x n_classes output from the net
# and reshape it into a (n_steps * n_seq) x n_classes matrix
# apply softmax, then reshape back
y_p = self.y_pred
y_p_m = T.reshape(y_p, (y_p.shape[0] * y_p.shape[1], -1))
y_p_s = T.nnet.softmax(y_p_m)
self.p_y_given_x = T.reshape(y_p_s, y_p.shape)
# compute prediction as class whose probability is maximal
self.y_out = T.argmax(self.p_y_given_x, axis=-1)
self.loss = lambda y: self.nll_multiclass(y)
else:
raise NotImplementedError
def mse(self, y):
# error between output and target
return T.mean((self.y_pred - y) ** 2)
def nll_binary(self, y):
# negative log likelihood based on binary cross entropy error
return T.mean(T.nnet.binary_crossentropy(self.p_y_given_x, y))
def nll_multiclass(self, y):
# negative log likelihood based on multiclass cross entropy error
#
# Theano's advanced indexing is limited
# therefore we reshape our n_steps x n_seq x n_classes tensor3 of probs
# to a (n_steps * n_seq) x n_classes matrix of probs
# so that we can use advanced indexing (i.e. get the probs which
# correspond to the true class)
# the labels y also must be flattened when we do this to use the
# advanced indexing
p_y = self.p_y_given_x
p_y_m = T.reshape(p_y, (p_y.shape[0] * p_y.shape[1], -1))
y_f = y.flatten(ndim=1)
return -T.mean(T.log(p_y_m)[T.arange(p_y_m.shape[0]), y_f])
def errors(self, y):
"""Return a float representing the number of errors in the minibatch
over the total number of examples of the minibatch ; zero one
loss over the size of the minibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
# check if y has same dimension of y_pred
if y.ndim != self.y_out.ndim:
raise TypeError('y should have the same shape as self.y_out',
('y', y.type, 'y_out', self.y_out.type))
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_out, y))
else:
raise NotImplementedError()
class MetaRNN(BaseEstimator):
def __init__(self, n_in=5, n_hidden=50, n_out=5, learning_rate=0.01,
n_epochs=100, batch_size=100, L1_reg=0.00, L2_reg=0.00,
learning_rate_decay=1,
activation='tanh', output_type='real', final_momentum=0.9,
initial_momentum=0.5, momentum_switchover=5,
snapshot_every=None, snapshot_path='/tmp'):
self.n_in = int(n_in)
self.n_hidden = int(n_hidden)
self.n_out = int(n_out)
self.learning_rate = float(learning_rate)
self.learning_rate_decay = float(learning_rate_decay)
self.n_epochs = int(n_epochs)
self.batch_size = int(batch_size)
self.L1_reg = float(L1_reg)
self.L2_reg = float(L2_reg)
self.activation = activation
self.output_type = output_type
self.initial_momentum = float(initial_momentum)
self.final_momentum = float(final_momentum)
self.momentum_switchover = int(momentum_switchover)
if snapshot_every is not None:
self.snapshot_every = int(snapshot_every)
else:
self.snapshot_every = None
self.snapshot_path = snapshot_path
self.ready()
def ready(self):
# input (where first dimension is time)
self.x = T.tensor3(name='x')
# target (where first dimension is time)
if self.output_type == 'real':
self.y = T.tensor3(name='y', dtype=theano.config.floatX)
elif self.output_type == 'binary':
self.y = T.tensor3(name='y', dtype='int32')
elif self.output_type == 'softmax': # now it is a matrix (T x n_seq)
self.y = T.matrix(name='y', dtype='int32')
else:
raise NotImplementedError
# learning rate
self.lr = T.scalar()
if self.activation == 'tanh':
activation = T.tanh
elif self.activation == 'sigmoid':
activation = T.nnet.sigmoid
elif self.activation == 'relu':
activation = lambda x: x * (x > 0)
elif self.activation == 'cappedrelu':
activation = lambda x: T.minimum(x * (x > 0), 6)
else:
raise NotImplementedError
self.rnn = RNN(input=self.x, n_in=self.n_in,
n_hidden=self.n_hidden, n_out=self.n_out,
activation=activation, output_type=self.output_type)
if self.output_type == 'real':
self.predict = theano.function(inputs=[self.x, ],
outputs=self.rnn.y_pred,
mode=mode)
elif self.output_type == 'binary':
self.predict_proba = theano.function(inputs=[self.x, ],
outputs=self.rnn.p_y_given_x, mode=mode)
self.predict = theano.function(inputs=[self.x, ],
outputs=T.round(self.rnn.p_y_given_x),
mode=mode)
elif self.output_type == 'softmax':
self.predict_proba = theano.function(inputs=[self.x, ],
outputs=self.rnn.p_y_given_x, mode=mode)
self.predict = theano.function(inputs=[self.x, ],
outputs=self.rnn.y_out, mode=mode)
else:
raise NotImplementedError
def shared_dataset(self, data_xy, borrow=True):
""" Load the dataset into shared variables """
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX),
borrow=True)
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX),
borrow=True)
if self.output_type in ('binary', 'softmax'):
return shared_x, T.cast(shared_y, 'int32')
else:
return shared_x, shared_y
def __getstate__(self):
""" Return state sequence."""
params = self._get_params() # parameters set in constructor
theta = self.rnn.theta.get_value()
state = (params, theta)
return state
def _set_weights(self, theta):
""" Set fittable parameters from weights sequence.
"""
self.rnn.theta.set_value(theta)
def __setstate__(self, state):
""" Set parameters from state sequence.
"""
params, theta = state
self.set_params(**params)
self.ready()
self._set_weights(theta)
def save(self, fpath='.', fname=None):
""" Save a pickled representation of Model state. """
fpathstart, fpathext = os.path.splitext(fpath)
if fpathext == '.pkl':
# User supplied an absolute path to a pickle file
fpath, fname = os.path.split(fpath)
elif fname is None:
# Generate filename based on date
date_obj = datetime.datetime.now()
date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S')
class_name = self.__class__.__name__
fname = '%s.%s.pkl' % (class_name, date_str)
fabspath = os.path.join(fpath, fname)
logger.info("Saving to %s ..." % fabspath)
file = open(fabspath, 'wb')
state = self.__getstate__()
pickle.dump(state, file, protocol=pickle.HIGHEST_PROTOCOL)
file.close()
def load(self, path):
""" Load model parameters from path. """
logger.info("Loading from %s ..." % path)
file = open(path, 'rb')
state = pickle.load(file)
self.__setstate__(state)
file.close()
def optional_output(self, train_set_x, show_norms=True, show_output=True):
""" Produces some debugging output. """
if show_norms:
norm_output = []
for param in self.rnn.params:
norm_output.append('%s: %6.4f' % (param.name,
self.get_norms[param]()))
logger.info("norms: {" + ', '.join(norm_output) + "}")
if show_output:
# show output for a single case
if self.output_type == 'binary':
output_fn = self.predict_proba
else:
output_fn = self.predict
logger.info("sample output: " + \
str(output_fn(train_set_x.get_value(
borrow=True)[:, 0, :][:, np.newaxis, :]).flatten()))
def fit(self, X_train, Y_train, X_test=None, Y_test=None,
validate_every=100, optimizer='sgd', compute_zero_one=False,
show_norms=True, show_output=True):
""" Fit model
Pass in X_test, Y_test to compute test error and report during
training.
X_train : ndarray (T x n_in)
Y_train : ndarray (T x n_out)
validation_frequency : int
in terms of number of epochs
optimizer : string
Optimizer type.
Possible values:
'sgd' : batch stochastic gradient descent
'cg' : nonlinear conjugate gradient algorithm
(scipy.optimize.fmin_cg)
'bfgs' : quasi-Newton method of Broyden, Fletcher, Goldfarb,
and Shanno (scipy.optimize.fmin_bfgs)
'l_bfgs_b' : Limited-memory BFGS (scipy.optimize.fmin_l_bfgs_b)
compute_zero_one : bool
in the case of binary output, compute zero-one error in addition to
cross-entropy error
show_norms : bool
Show L2 norms of individual parameter groups while training.
show_output : bool
Show the model output on first training case while training.
"""
if X_test is not None:
assert(Y_test is not None)
self.interactive = True
test_set_x, test_set_y = self.shared_dataset((X_test, Y_test))
else:
self.interactive = False
train_set_x, train_set_y = self.shared_dataset((X_train, Y_train))
if compute_zero_one:
assert(self.output_type == 'binary' \
or self.output_type == 'softmax')
# compute number of minibatches for training
# note that cases are the second dimension, not the first
n_train = train_set_x.get_value(borrow=True).shape[1]
n_train_batches = int(np.ceil(1.0 * n_train / self.batch_size))
if self.interactive:
n_test = test_set_x.get_value(borrow=True).shape[1]
n_test_batches = int(np.ceil(1.0 * n_test / self.batch_size))
#validate_every is specified in terms of epochs
validation_frequency = validate_every * n_train_batches
######################
# BUILD ACTUAL MODEL #
######################
logger.info('... building the model')
index = T.lscalar('index') # index to a [mini]batch
n_ex = T.lscalar('n_ex') # total number of examples
# learning rate (may change)
l_r = T.scalar('l_r', dtype=theano.config.floatX)
mom = T.scalar('mom', dtype=theano.config.floatX) # momentum
cost = self.rnn.loss(self.y) \
+ self.L1_reg * self.rnn.L1 \
+ self.L2_reg * self.rnn.L2_sqr
# Proper implementation of variable-batch size evaluation
# Note that classifier.errors() returns the mean error
# But the last batch may be a smaller size
# So we keep around the effective_batch_size (whose last element may
# be smaller than the rest)
# And weight the reported error by the batch_size when we average
# Also, by keeping batch_start and batch_stop as symbolic variables,
# we make the theano function easier to read
batch_start = index * self.batch_size
batch_stop = T.minimum(n_ex, (index + 1) * self.batch_size)
effective_batch_size = batch_stop - batch_start
get_batch_size = theano.function(inputs=[index, n_ex],
outputs=effective_batch_size)
compute_train_error = theano.function(inputs=[index, n_ex],
outputs=self.rnn.loss(self.y),
givens={self.x: train_set_x[:, batch_start:batch_stop],
self.y: train_set_y[:, batch_start:batch_stop]},
mode=mode)
if compute_zero_one:
compute_train_zo = theano.function(inputs=[index, n_ex],
outputs=self.rnn.errors(self.y),
givens={self.x: train_set_x[:, batch_start:batch_stop],
self.y: train_set_y[:, batch_start:batch_stop]},
mode=mode)
if self.interactive:
compute_test_error = theano.function(inputs=[index, n_ex],
outputs=self.rnn.loss(self.y),
givens={self.x: test_set_x[:, batch_start:batch_stop],
self.y: test_set_y[:, batch_start:batch_stop]},
mode=mode)
if compute_zero_one:
compute_test_zo = theano.function(inputs=[index, n_ex],
outputs=self.rnn.errors(self.y),
givens={self.x: test_set_x[:, batch_start:batch_stop],
self.y: test_set_y[:, batch_start:batch_stop]},
mode=mode)
self.get_norms = {}
for param in self.rnn.params:
self.get_norms[param] = theano.function(inputs=[],
outputs=self.rnn.l2_norms[param], mode=mode)
# compute the gradient of cost with respect to theta using BPTT
gtheta = T.grad(cost, self.rnn.theta)
if optimizer == 'sgd':
updates = {}
theta = self.rnn.theta
theta_update = self.rnn.theta_update
# careful here, update to the shared variable
# cannot depend on an updated other shared variable
# since updates happen in parallel
# so we need to be explicit
upd = mom * theta_update - l_r * gtheta
updates[theta_update] = upd
updates[theta] = theta + upd
# compiling a Theano function `train_model` that returns the
# cost, but in the same time updates the parameter of the
# model based on the rules defined in `updates`
train_model = theano.function(inputs=[index, n_ex, l_r, mom],
outputs=cost,
updates=updates,
givens={self.x: train_set_x[:, batch_start:batch_stop],
self.y: train_set_y[:, batch_start:batch_stop]},
mode=mode)
###############
# TRAIN MODEL #
###############
logger.info('... training')
epoch = 0
while (epoch < self.n_epochs):
epoch = epoch + 1
effective_momentum = self.final_momentum \
if epoch > self.momentum_switchover \
else self.initial_momentum
for minibatch_idx in xrange(n_train_batches):
minibatch_avg_cost = train_model(minibatch_idx, n_train,
self.learning_rate,
effective_momentum)
# iteration number (how many weight updates have we made?)
# epoch is 1-based, index is 0 based
iter = (epoch - 1) * n_train_batches + minibatch_idx + 1
if iter % validation_frequency == 0:
# compute loss on training set
train_losses = [compute_train_error(i, n_train)
for i in xrange(n_train_batches)]
train_batch_sizes = [get_batch_size(i, n_train)
for i in xrange(n_train_batches)]
this_train_loss = np.average(train_losses,
weights=train_batch_sizes)
if compute_zero_one:
train_zero_one = [compute_train_zo(i, n_train)
for i in xrange(n_train_batches)]
this_train_zero_one = np.average(train_zero_one,
weights=train_batch_sizes)
if self.interactive:
test_losses = [compute_test_error(i, n_test)
for i in xrange(n_test_batches)]
test_batch_sizes = [get_batch_size(i, n_test)
for i in xrange(n_test_batches)]
this_test_loss = np.average(test_losses,
weights=test_batch_sizes)
if compute_zero_one:
test_zero_one = [compute_test_zo(i, n_test)
for i in xrange(n_test_batches)]
this_test_zero_one = np.average(test_zero_one,
weights=test_batch_sizes)
if compute_zero_one:
logger.info('epoch %i, mb %i/%i, tr loss %f, '
'tr zo %f, te loss %f '
'te zo %f lr: %f' % \
(epoch, minibatch_idx + 1,
n_train_batches,
this_train_loss, this_train_zero_one,
this_test_loss, this_test_zero_one,
self.learning_rate))
else:
logger.info('epoch %i, mb %i/%i, tr loss %f '
'te loss %f lr: %f' % \
(epoch, minibatch_idx + 1, n_train_batches,
this_train_loss, this_test_loss,
self.learning_rate))
else:
if compute_zero_one:
logger.info('epoch %i, mb %i/%i, train loss %f'
' train zo %f '
'lr: %f' % (epoch,
minibatch_idx + 1,
n_train_batches,
this_train_loss,
this_train_zero_one,
self.learning_rate))
else:
logger.info('epoch %i, mb %i/%i, train loss %f'
' lr: %f' % (epoch,
minibatch_idx + 1,
n_train_batches,
this_train_loss,
self.learning_rate))
self.optional_output(train_set_x, show_norms,
show_output)
self.learning_rate *= self.learning_rate_decay
if self.snapshot_every is not None:
if (epoch + 1) % self.snapshot_every == 0:
date_obj = datetime.datetime.now()
date_str = date_obj.strftime('%Y-%m-%d-%H:%M:%S')
class_name = self.__class__.__name__
fname = '%s.%s-snapshot-%d.pkl' % (class_name,
date_str, epoch + 1)
fabspath = os.path.join(self.snapshot_path, fname)
self.save(fpath=fabspath)
elif optimizer == 'cg' or optimizer == 'bfgs' \
or optimizer == 'l_bfgs_b':
# compile a theano function that returns the cost of a minibatch
batch_cost = theano.function(inputs=[index, n_ex],
outputs=cost,
givens={self.x: train_set_x[:, batch_start:batch_stop],
self.y: train_set_y[:, batch_start:batch_stop]},
mode=mode, name="batch_cost")
# compile a theano function that returns the gradient of the
# minibatch with respect to theta
batch_grad = theano.function(inputs=[index, n_ex],
outputs=T.grad(cost, self.rnn.theta),
givens={self.x: train_set_x[:, batch_start:batch_stop],
self.y: train_set_y[:, batch_start:batch_stop]},
mode=mode, name="batch_grad")
# creates a function that computes the average cost on the training
# set
def train_fn(theta_value):
self.rnn.theta.set_value(theta_value, borrow=True)
train_losses = [batch_cost(i, n_train)
for i in xrange(n_train_batches)]
train_batch_sizes = [get_batch_size(i, n_train)
for i in xrange(n_train_batches)]
return np.average(train_losses, weights=train_batch_sizes)
# creates a function that computes the average gradient of cost
# with respect to theta
def train_fn_grad(theta_value):
self.rnn.theta.set_value(theta_value, borrow=True)
train_grads = [batch_grad(i, n_train)
for i in xrange(n_train_batches)]
train_batch_sizes = [get_batch_size(i, n_train)
for i in xrange(n_train_batches)]
return np.average(train_grads, weights=train_batch_sizes,
axis=0)
# validation function, prints useful output after each iteration
def callback(theta_value):
self.epoch += 1
if (self.epoch) % validate_every == 0:
self.rnn.theta.set_value(theta_value, borrow=True)
# compute loss on training set
train_losses = [compute_train_error(i, n_train)
for i in xrange(n_train_batches)]
train_batch_sizes = [get_batch_size(i, n_train)
for i in xrange(n_train_batches)]
this_train_loss = np.average(train_losses,
weights=train_batch_sizes)
if compute_zero_one:
train_zero_one = [compute_train_zo(i, n_train)
for i in xrange(n_train_batches)]
this_train_zero_one = np.average(train_zero_one,
weights=train_batch_sizes)
if self.interactive:
test_losses = [compute_test_error(i, n_test)
for i in xrange(n_test_batches)]
test_batch_sizes = [get_batch_size(i, n_test)
for i in xrange(n_test_batches)]
this_test_loss = np.average(test_losses,
weights=test_batch_sizes)
if compute_zero_one:
test_zero_one = [compute_test_zo(i, n_test)
for i in xrange(n_test_batches)]
this_test_zero_one = np.average(test_zero_one,
weights=test_batch_sizes)
if compute_zero_one:
logger.info('epoch %i, tr loss %f, '
'tr zo %f, te loss %f '
'te zo %f' % \
(self.epoch, this_train_loss,
this_train_zero_one, this_test_loss,
this_test_zero_one))
else:
logger.info('epoch %i, tr loss %f, te loss %f' % \
(self.epoch, this_train_loss,
this_test_loss, self.learning_rate))
else:
if compute_zero_one:
logger.info('epoch %i, train loss %f'
', train zo %f ' % \
(self.epoch, this_train_loss,
this_train_zero_one))
else:
logger.info('epoch %i, train loss %f ' % \
(self.epoch, this_train_loss))
self.optional_output(train_set_x, show_norms, show_output)
###############
# TRAIN MODEL #
###############
logger.info('... training')
# using scipy conjugate gradient optimizer
import scipy.optimize
if optimizer == 'cg':
of = scipy.optimize.fmin_cg
elif optimizer == 'bfgs':
of = scipy.optimize.fmin_bfgs
elif optimizer == 'l_bfgs_b':
of = scipy.optimize.fmin_l_bfgs_b
logger.info("Optimizing using %s..." % of.__name__)
start_time = time.clock()
# keep track of epochs externally
# these get updated through callback
self.epoch = 0
# interface to l_bfgs_b is different than that of cg, bfgs
# however, this will be changed in scipy 0.11
# unified under scipy.optimize.minimize
if optimizer == 'cg' or optimizer == 'bfgs':
best_theta = of(
f=train_fn,
x0=self.rnn.theta.get_value(),
# x0=np.zeros(self.rnn.theta.get_value().shape,
# dtype=theano.config.floatX),
fprime=train_fn_grad,
callback=callback,
disp=1,
retall=1,
maxiter=self.n_epochs)
elif optimizer == 'l_bfgs_b':
best_theta, f_best_theta, info = of(
func=train_fn,
x0=self.rnn.theta.get_value(),
fprime=train_fn_grad,
iprint=validate_every,
maxfun=self.n_epochs) # max number of feval
end_time = time.clock()
print "Optimization time: %f" % (end_time - start_time)
else:
raise NotImplementedError
def test_real(n_epochs=1000):
""" Test RNN with real-valued outputs. """
n_hidden = 10
n_in = 5
n_out = 3
n_steps = 10
n_seq = 10 # per batch
n_batches = 10
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_steps, n_seq * n_batches, n_in)
targets = np.zeros((n_steps, n_seq * n_batches, n_out))
targets[1:, :, 0] = seq[:-1, :, 3] # delayed 1
targets[1:, :, 1] = seq[:-1, :, 2] # delayed 1
targets[2:, :, 2] = seq[:-2, :, 0] # delayed 2
targets += 0.01 * np.random.standard_normal(targets.shape)
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.01, learning_rate_decay=0.999,
n_epochs=n_epochs, batch_size=n_seq, activation='tanh',
L2_reg=1e-3)
model.fit(seq, targets, validate_every=100, optimizer='bfgs')
plt.close('all')
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[:, 0, :])
ax1.set_title('input')
ax2 = plt.subplot(212)
true_targets = plt.plot(targets[:, 0, :])
guess = model.predict(seq[:, 0, :][:, np.newaxis, :])
guessed_targets = plt.plot(guess.squeeze(), linestyle='--')
for i, x in enumerate(guessed_targets):
x.set_color(true_targets[i].get_color())
ax2.set_title('solid: true output, dashed: model output')
def test_binary(multiple_out=False, n_epochs=1000, optimizer='cg'):
""" Test RNN with binary outputs. """
n_hidden = 10
n_in = 5
if multiple_out:
n_out = 2
else:
n_out = 1
n_steps = 10
n_seq = 10 # per batch
n_batches = 50
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_steps, n_seq * n_batches, n_in)
targets = np.zeros((n_steps, n_seq * n_batches, n_out))
# whether lag 1 (dim 3) is greater than lag 2 (dim 0)
targets[2:, :, 0] = np.cast[np.int](seq[1:-1, :, 3] > seq[:-2, :, 0])
if multiple_out:
# whether product of lag 1 (dim 4) and lag 1 (dim 2)
# is less than lag 2 (dim 0)
targets[2:, :, 1] = np.cast[np.int](
(seq[1:-1, :, 4] * seq[1:-1, :, 2]) > seq[:-2, :, 0])
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.005, learning_rate_decay=0.999,
n_epochs=n_epochs, batch_size=n_seq, activation='tanh',
output_type='binary')
model.fit(seq, targets, validate_every=100, compute_zero_one=True,
optimizer=optimizer)
seqs = xrange(10)
plt.close('all')
for seq_num in seqs:
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[:, seq_num, :])
ax1.set_title('input')
ax2 = plt.subplot(212)
true_targets = plt.step(xrange(n_steps), targets[:, seq_num, :],
marker='o')
guess = model.predict_proba(seq[:, seq_num, :][:, np.newaxis, :])
guessed_targets = plt.step(xrange(n_steps), guess.squeeze())
plt.setp(guessed_targets, linestyle='--', marker='d')
for i, x in enumerate(guessed_targets):
x.set_color(true_targets[i].get_color())
ax2.set_ylim((-0.1, 1.1))
ax2.set_title('solid: true output, dashed: model output (prob)')
def test_softmax(n_epochs=250, optimizer='cg'):
""" Test RNN with softmax outputs. """
n_hidden = 10
n_in = 5
n_steps = 10
n_seq = 10 # per batch
n_batches = 50
n_classes = 3
n_out = n_classes # restricted to single softmax per time step
np.random.seed(0)
# simple lag test
seq = np.random.randn(n_steps, n_seq * n_batches, n_in)
targets = np.zeros((n_steps, n_seq * n_batches), dtype=np.int)
thresh = 0.5
# if lag 1 (dim 3) is greater than lag 2 (dim 0) + thresh
# class 1
# if lag 1 (dim 3) is less than lag 2 (dim 0) - thresh
# class 2
# if lag 2(dim0) - thresh <= lag 1 (dim 3) <= lag2(dim0) + thresh
# class 0
targets[2:, :][seq[1:-1, :, 3] > seq[:-2, :, 0] + thresh] = 1
targets[2:, :][seq[1:-1, :, 3] < seq[:-2, :, 0] - thresh] = 2
#targets[:, 2:, 0] = np.cast[np.int](seq[:, 1:-1, 3] > seq[:, :-2, 0])
model = MetaRNN(n_in=n_in, n_hidden=n_hidden, n_out=n_out,
learning_rate=0.005, learning_rate_decay=0.999,
n_epochs=n_epochs, batch_size=n_seq, activation='tanh',
output_type='softmax')
model.fit(seq, targets, validate_every=10, compute_zero_one=True,
optimizer=optimizer)
seqs = xrange(10)
plt.close('all')
for seq_num in seqs:
fig = plt.figure()
ax1 = plt.subplot(211)
plt.plot(seq[:, seq_num])
ax1.set_title('input')
ax2 = plt.subplot(212)
# blue line will represent true classes
true_targets = plt.step(xrange(n_steps), targets[:, seq_num],
marker='o')
# show probabilities (in b/w) output by model
guess = model.predict_proba(seq[:, seq_num][:, np.newaxis])
guessed_probs = plt.imshow(guess.squeeze().T, interpolation='nearest',
cmap='gray')
ax2.set_title('blue: true class, grayscale: probs assigned by model')
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
t0 = time.time()
test_real(n_epochs=1000)
#test_binary(optimizer='sgd', n_epochs=1000)
#test_softmax(n_epochs=250, optimizer='sgd')
print "Elapsed time: %f" % (time.time() - t0)