-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathcellularsnowflake.scad
executable file
·124 lines (100 loc) · 3.94 KB
/
cellularsnowflake.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
hexSize = 10;
// If you use join mode, it is recommended you set filledRatio to 0.5 or less.
joinMode = 0; // [0:no, 1:yes]
// How much of the hex to fill.
filledFraction = 1;
steps = 50;
thickness = 2;
// Generation rule. A sequence of probabilities depending on how many neighbors there are, between 0 and 6. The first entry is the probability of generating with zero neighbors. The last entry is the probability of generating with six neighbors.
generationRule = [0,.4,0,0,0,0,0];
// Survival rule. A sequence of probabilities depending on how many neighbors there are, between 0 and 6. The first entry is the probability of surviving with zero neighbors. The last entry is the probability of surviving with six neighbors.
survivalRule = [1,1,1,1,1,0,1];
color1 = [.26,.71,1];
color2 = [1,1,1];
// Set to 0 to get something different each time.
seed = 0;
module dummy(){}
rules =
[ generationRule, survivalRule ];
animate = 0;
data = [[steps+1]];
cos30 = cos(30);
sin30 = sin(30);
// The data holds about 1/12 of the snowflake.
function rowSize(i) =
i == 0 ? 1 : ceil((i+1)/2);
function sum(vector, pos=0, soFar=0) =
pos >= len(vector) ? soFar :
sum(vector, pos=pos+1, soFar=vector[pos]+soFar);
function cumulativeSums(vector, pos=0, soFar=[0]) =
pos >= len(vector) ? soFar :
cumulativeSums(vector, pos=pos+1, soFar=concat(soFar,[soFar[pos]+vector[pos]]));
cumulativeRowSizes = cumulativeSums([for(i=[0:steps]) rowSize(i)]);
numCells = cumulativeRowSizes[steps+1];
numRandomPoints = steps * numCells;
rawRandomData = seed ? rands(0,1,numRandomPoints,seed) : rands(0,1,numRandomPoints);
function getRandom(step, i, j) =
rawRandomData[step*numCells + cumulativeRowSizes[i] + j];
// This allows data to be got at points at one
// remove from the data by using symmetries.
function getExact(data,i,j) =
i >= len(data) ? 0 :
i <= 1 ? data[i][0] :
let(rs = rowSize(i)) (
j == -1 ? data[i][1] :
j == rs ? ( i%2 ? data[i][rs-1] : data[i][rs-2] )
: data[i][j] );
function get(data,i,j) =
getExact(data,i,j) > 0 ? 1 : 0;
function getColor(n) =
let(t=(steps+1-n)/steps)
(1-t)*color1+t*color2;
function neighborCount(data,i,j) =
i == 0 ? 6*get(data,1,0) :
j == 0 ? get(data,i,-1)+get(data,i,1)+get(data,i+1,-1)+get(data,i+1,0)+get(data,i+1,1)+get(data,i-1,0) :
get(data,i,j-1)+get(data,i,j+1)+get(data,i+1,j)+get(data,i+1,j+1)+get(data,i-1,j)+get(data,i-1,j-1);
function evolve(data, n) =
n == 0 ? data :
evolve(
[ for(i=[0:len(data)])
[ for(j=[0:rowSize(i)-1])
rules[get(data,i,j)][neighborCount(data,i,j)] >= getRandom(n-1,i,j) * 0.999999 ? (getExact(data,i,j)>0 ? getExact(data,i,j) : n) : 0 ] ], n-1);
function getCoordinates(i,j) =
hexSize*([0,i]+[cos(30),-sin(30)]*j);
module show(i,j,n) {
color(getColor(n))
linear_extrude(height=thickness)
foldout()
translate(getCoordinates(i,j)) circle(r=1.001*hexSize/sqrt(3)*filledFraction,$fn=6);
}
module visualize(data) {
for(i=[0:len(data)-1]) for(j=[0:rowSize(i)-1])
if(data[i][j] > 0) show(i,j,data[i][j]);
}
module visualizeJoined(data) {
for(i=[0:len(data)-1]) for(j=[0:rowSize(i)-1])
if(data[i][j]) {
if(get(data,i,j+1))
hull() { show(i,j); show(i,j+1); }
if(get(data,i+1,j))
hull() { show(i,j); show(i+1,j); }
if (get(data,i+1,j+1))
hull() { show(i,j); show(i+1,j+1); }
}
}
module foldout() {
for(i=[0:60:359.999]) rotate(i) {
mirror([1,0]) children();
children();
}
}
if (animate) {
foldout() visualize(evolve(data,round($t*steps)));
}
else {
if (joinMode)
linear_extrude(height=thickness)
visualizeJoined(evolve(data,steps));
else
visualize(evolve(data,steps));
}