-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
132 lines (109 loc) · 5.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
from tqdm import tqdm
import torch
from torch import optim
from utils.common import ProgressPlotter
from utils.metric_utils import calculate_metrics
from utils.plot_utils import plot_sample_features
from time import time
import numpy as np
def eval(model, dataloader, criterion, outputs_dir, iteration, device, limit_val_samples=None):
losses = []
recal_sets, precision_sets, APs = [], [], []
debug_outputs = []
debug_targets = []
debug_inputs = []
debug_file_names = []
val_sampler = dataloader.dataset.get_validation_sampler(max_validate_num=limit_val_samples)
for idx, (input, target, file_name) in enumerate(val_sampler):
model.eval()
with torch.no_grad():
model.eval()
output = model(input.to(device).float()).cpu()
loss = criterion(output, target.float())
if len(input.shape) == 4:
mode = 'Spectogram'
# spectogram: (batch, channels, frames, bins),
# output: (batch, frames, classes)
# target: (batch, frames, classes)
input = input[0]
output = output[0]
target = target[0]
else:
mode = 'Waveform'
# waveform (frames, channels, wave_samples),
# output: (frames, classes)
# target: (frames)
input = input.permute(1, 0, 2)
target = target.reshape(-1,1)
output_logits = torch.sigmoid(output).numpy()
target = target.numpy()
recal_vals, precision_vals, AP = calculate_metrics(output_logits, target)
losses.append(loss.item())
recal_sets.append(recal_vals)
precision_sets.append(precision_vals)
APs.append(AP)
debug_inputs.append(input)
debug_outputs.append(output_logits)
debug_targets.append(target)
debug_file_names.append(file_name)
# plot input, outputs and targets of worst and best samples by each metric
for (metric_name, values, named_indices) in [
("loss", losses, [('worst', -1), ('2-worst', -2), ('3-worst', -3), ('best', 0)]),
('AP', APs, [('worst', 0), ('best', -1)])]:
indices = np.argsort(values)
for (name, idx) in named_indices:
val_sample_idx = indices[idx]
plot_sample_features(debug_inputs[val_sample_idx],
mode=mode,
output=debug_outputs[val_sample_idx],
target=debug_targets[val_sample_idx],
file_name=debug_file_names[val_sample_idx] + f" {metric_name} {values[val_sample_idx]:.2f}",
plot_path=os.path.join(outputs_dir, 'images', f"Iter-{iteration}",
f"{metric_name}-{name}.png"))
return losses, recal_sets, precision_sets, APs
def train(model, data_loader, criterion, num_steps, lr, log_freq, outputs_dir, device):
print("Training:")
print("\t- Using device: ", device)
lr_decay_freq = 200
plotter = ProgressPlotter()
os.makedirs(os.path.join(outputs_dir, 'checkpoints'), exist_ok=True)
# Optimizer
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0., amsgrad=True)
iterations = 0
epoch = 0
training_start_time = time()
tqdm_bar = tqdm(total=num_steps)
tqdm_bar.set_description("Waiting for information..")
while iterations < num_steps:
for (batch_features, event_labels) in data_loader:
tqdm_bar.update()
# forward
model.train()
batch_outputs = model(batch_features.to(device).float())
loss = criterion(batch_outputs, event_labels.to(device).float())
# Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
plotter.report_train_loss(loss.item())
iterations += 1
if iterations % lr_decay_freq == 0:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.997
if iterations % log_freq == 0:
im_sec = iterations * data_loader.batch_size / (time() - training_start_time)
tqdm_bar.set_description(
f"epoch: {epoch}, step: {iterations}, loss: {loss.item():.2f}, im/sec: {im_sec:.1f}, lr: {optimizer.param_groups[0]['lr']:.8f}")
val_losses, recal_sets, precision_sets, APs = eval(model, data_loader, criterion, outputs_dir, iteration=iterations,
device=device, limit_val_samples=3)
plotter.report_validation_metrics(val_losses, recal_sets, precision_sets, APs, iterations)
plotter.plot(outputs_dir)
checkpoint = {
'iterations': iterations,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, os.path.join(outputs_dir, 'checkpoints', f"iteration_{iterations}.pth"))
if iterations == num_steps:
break
epoch += 1