Skip to content

[EPIC] Improve aggregate performance with adaptive sizing in accumulators / avoiding reallocations in accumulators #7065

Open
@alamb

Description

@alamb

UPDATE: Now that @Rachelint has begun work on #11931 I turned this ticket into an "epic" (aka I'll link related tasks here)

Is your feature request related to a problem or challenge?

Making aggregations fast in datafusion helps its adoption and makes it even cooler

As part of the new #6904 work, @yjshen had an idea #6800 (comment) that could avoid a copy in the accumulator implementations:

Describe the solution you'd like

Adaptive sizing(perhaps?): How would the hash table header and states in each accumulator initialize and grow their sizes afterward?

Here is the structure of the current group operator

                                         ┌──────────────┐   ┌──────────────┐   ┌──────────────┐
                                         │┌────────────┐│   │┌────────────┐│   │┌────────────┐│
    ┌─────┐                              ││accumulator ││   ││accumulator ││   ││accumulator ││
    │  5  │                              ││     0      ││   ││     0      ││   ││     0      ││
    ├─────┤                              ││ ┌────────┐ ││   ││ ┌────────┐ ││   ││ ┌────────┐ ││
    │  9  │                              ││ │ state  │ ││   ││ │ state  │ ││   ││ │ state  │ ││
    ├─────┤                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    │     │                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    ├─────┤                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    │  1  │                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    ├─────┤                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    │     │                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    └─────┘                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
                                         ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
                                         ││ └────────┘ ││   ││ └────────┘ ││   ││ └────────┘ ││
                                         │└────────────┘│   │└────────────┘│   │└────────────┘│
    Hash Table                           └──────────────┘   └──────────────┘   └──────────────┘
                                                                                               
                                          New NewAccumulator                                   
                                                                                               
                                                                                               
                                                                                               
stores "group indexes"                     There is one GroupsAccumulator per aggregate           
which are indexes into                     (NOT PER GROUP). Internally, each                   
Vec<GroupState>                            GroupsAccumulator manages the state for                
                                           multiple groups                                     

The implementation of this, such as Average is to use a Vec<T>. While this approach is simple to implement, it also means that as the Vec grows, the accumulated vales may be copied (up to 2 times on average, given a doubling strategy)

An alternate, suggested by @yjshen is to segment the state into fixed-sized vectors, allocate a new vector at a time, fill it until full, then create a new vector for upcoming new states.

                                         ┌──────────────┐   ┌──────────────┐   ┌──────────────┐
                                         │┌────────────┐│   │┌────────────┐│   │┌────────────┐│
    ┌─────┐                              ││accumulator ││   ││accumulator ││   ││accumulator ││
    │  5  │                              ││     AGG    ││   ││     SUM    ││   ││     0      ││
    ├─────┤                              ││ ┌────────┐ ││   ││ ┌────────┐ ││   ││ ┌────────┐ ││
    │  9  │                              ││ │ state- │ ││   ││ │ state- │ ││   ││ │ state  │ ││
    ├─────┤                              ││ │segment-│ ││   ││ │segment-│ ││   ││ │        │ ││
    │     │                              ││ │   1    │ ││   ││ │   1    │ ││   ││ │        │ ││
    ├─────┤                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    │  1  │                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    ├─────┤                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    │     │                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
    └─────┘                              ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
                                         ││ │        │ ││   ││ │        │ ││   ││ │        │ ││
                                         ││ └────────┘ ││   ││ └────────┘ ││   ││ └────────┘ ││
                                         ││            ││   ││            ││   │└────────────┘│
    Hash Table                           ││ ┌────────┐ ││   ││ ┌────────┐ ││   └──────────────┘
                                         ││ │ state- │ ││   ││ │ state- │ ││                   
                                         ││ │segment-│ ││   ││ │segment-│ ││                   
                                         ││ │   2    │ ││   ││ │   2    │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ │        │ ││   ││ │        │ ││                   
                                         ││ └────────┘ ││   ││ └────────┘ ││                   
                                         │└────────────┘│   │└────────────┘│                   
                                         └──────────────┘   └──────────────┘                   
                                                                                               

Thru this segmented approach, we could avoid memory copy for each resize, which the number of resizing would be great for high cardinality aggs, and grows the size more predictably.

But admittedly, this approach would also bring complexity for both header pointer management and update span multiple vectors.

Implementation Steps:

Metadata

Metadata

Assignees

Labels

enhancementNew feature or request

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions