-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShelah-Spencer VC (Anton, Sep 24 18h21).tex
71 lines (49 loc) · 3.5 KB
/
Shelah-Spencer VC (Anton, Sep 24 18h21).tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\documentclass{amsart}
\usepackage{../AMC_style}
\usepackage{../Research}
\usepackage{diagrams}
\newcommand{\A}{\mathcal A}
\newcommand{\B}{\mathcal B}
\renewcommand{\C}{\mathcal C}
\newcommand{\D}{\mathcal D}
\renewcommand{\H}{\mathcal H}
\newcommand{\G}{\mathcal G}
\newcommand{\M}{\mathcal M}
\newcommand{\K}{\boldface K_\alpha}
\renewcommand{\S}{S_\alpha}
\begin{document}
\title{Some vc-density computations in Shelah-Spencer graphs}
\author{Anton Bobkov}
\email{[email protected]}
\begin{abstract}
We compute vc-densities of minimal extension formulas in Shelah-Spencer random graphs.
\end{abstract}
\maketitle
We fix the density of the graph $\alpha$.
\begin{Lemma}
For any $\A \in \K$ and $\epsilon > 0$ there exists an $\B$ such that $(\A, \B)$ is minimal and $\delta(\B/\A) < \epsilon$.
\end{Lemma}
\begin{proof}
Let $m$ be an integer such that $m\alpha < 1 < (m+1)\alpha$. Suppose $\A$ has less than $m+1$ vertices. Make a construction $\A_0 = \A$ and $\A_{i+1}$ is $\A_i$ with one extra vertex connected to every single vertex of $A_i$. Stop when the total number of vertices is $m+1$. Proceed as in \cite{Laskowski} 4.1. Resulting construction is still minimal.
\end{proof}
\begin{Lemma}
Let $\A_1 \subset \B_1$ and $\A_2 \subset \B_2$ be $\K$ structures with $(\A_2, \B_2)$ a minimal pair. Let $M$ be some ambient structure. Fix embeddings of $\A_1, \B_1, \A_2$ into $M$. Now consider all possible embeddings $f \colon \B_2 \to M$ over $\A_1$. Let $\A = \A_1 \cup \A_2$ and $\B_f = \B_1 \cup f(\B_2)$ with $\delta_f = \delta(\B_f/\A)$. Then $\delta_f$ is at most $\delta(\B_1 \cup \A/\A) + \delta (\B_2/\A_2)$
\end{Lemma}
\begin{diagram}
& &\B_1 \cup \B_2 = \B \\
&\ruLine & &\luLine \\
\B_1 \cup \A & & & &\B_2 \cup \A \\
&\luLine & &\ruLine \\
& &(\B_1 \cap \B_2) \cup \A \\
& &\uLine \\
& &\A_1 \cup \A_2 = \A\\
\end{diagram}
From the diagram we see that $\delta(\B/\A) \leq \delta(\B_1 \cup \A/\A) + \delta\left((\B_2 \cup \A)/((\B_1 \cap \B_2) \cup \A)\right)$. Thus all we need to do is to verify that $\delta\left((\B_2 \cup \A)/((\B_1 \cap \B_2) \cup \A)\right) \leq \delta (\B_2/\A_2)$. Look at the structure $\B^*$ induced inside of $B_2$ by vertices of $(B_1 \cap B_2) \cup A$. It contains $\A$. Suppose it is not the whole $B_2$. Then we have by minimality that $\delta(\B^*/\A_2) > 0$ and thus $\delta(\B_2/\B^*) < \delta (\B_2/\A_2)$. Now $(\B_2 \cup \A)/((\B_1 \cap \B_2) \cup \A)$ has the same number of vertices as $\B_2/\B^*$ and at least as many edges. Claim follows.
Let $\phi(x,y)$ be a formula in a random graph with $|x|=|y|=1$ saying that there exists a minimal extension $M$ over $\{x,y\}$ of relative dimension $\epsilon$. Let $n$ be such that $n\epsilon < 1 < (n+1)\epsilon$. Then we argue that $vc(\phi) = n$.
Fix a $m$-strong (for any $m > |M|$) set of non-connected vertices $B$. Fix some $a$. We invesitgate the trace of $\phi(x, a)$ on $B$. Suppose we have $b_1, \ldots, b_k$ satisfying $\phi(b_i, a)$ as witnessed by $M_j$. Relative dimension of $M_1 \cup M_2 \cup \ldots \cup M_j \cup {a}$ is minimized when all $M_j$ are disjoint (by minimality). Thus for that dimension to be positive we can have at most $n$ extensions.
\begin{thebibliography}{9}
\bibitem{Laskowski}
Michael C. Laskowski, \textsl{A simpler axiomatization of the Shelah-Spencer almost sure theories,}
Israel J. Math. \textbf{161} (2007), 157-186. MR MR2350161
\end{thebibliography}
\end{document}