-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShelah-Spencer VC (Anton, Oct 25 14h17).tex
91 lines (68 loc) · 3.95 KB
/
Shelah-Spencer VC (Anton, Oct 25 14h17).tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
\documentclass{amsart}
\usepackage{../AMC_style}
\usepackage{../Research}
\usepackage{diagrams}
\newcommand{\A}{\mathcal A}
\newcommand{\B}{\mathcal B}
\renewcommand{\C}{\mathcal C}
\newcommand{\D}{\mathcal D}
\renewcommand{\H}{\mathcal H}
\newcommand{\G}{\mathcal G}
\newcommand{\M}{\mathcal M}
\newcommand{\K}{\boldface K_\alpha}
\renewcommand{\S}{S_\alpha}
\begin{document}
\title{Some vc-density computations in Shelah-Spencer graphs}
\author{Anton Bobkov}
\email{[email protected]}
\begin{abstract}
We compute vc-densities of minimal extension formulas in Shelah-Spencer random graphs.
\end{abstract}
\maketitle
We fix the density of the graph $\alpha$.
\begin{Lemma}
For any $\A \in \K$ and $\epsilon > 0$ there exists an $\B$ such that $(\A, \B)$ is minimal and $\delta(\B/\A) < \epsilon$.
\end{Lemma}
\begin{proof}
Let $m$ be an integer such that $m\alpha < 1 < (m+1)\alpha$. Suppose $\A$ has less than $m+1$ vertices. Make a construction $\A_0 = \A$ and $\A_{i+1}$ is $\A_i$ with one extra vertex connected to every single vertex of $A_i$. Stop when the total number of vertices is $m+1$. Proceed as in \cite{Laskowski} 4.1. Resulting construction is still minimal.
\end{proof}
\begin{Lemma}
Let $\A_1 \subset \B_1$ and $\A_2 \subset \B_2$ be $\K$ structures with $(\A_2, \B_2)$ a minimal pair with $\epsilon = \delta (\B_2/\A_2)$. Let $M$ be some ambient structure. Fix embeddings of $\A_1, \B_1, \A_2$ into $M$. Assume that it is not that case that $\A_2 \subset \B_2$ and $\A_1$ is disjoint from $\A_2$. Now consider all possible embeddings $f \colon \B_2 \to M$ over $\A_1$. Let $\A = \A_1 \cup \A_2$ and $\B_f = \B_1 \cup f(\B_2)$ with $\delta_f = \delta(\B_f/\A)$. Then $\delta_f$ is at most $\delta(\B_1 \cup \A/\A) + \epsilon$
\end{Lemma}
Fix an embedding $f$. It induces the following substructure diagram in $M$. Denote
\begin{align*}
\A &= \A_1 \cup \A_2 \\
\B_f^* &= \B_1 \cup f(\B_2) \\
\B_1^* &= \B_1 \cup \A \\
\B_2^* &= f(\B_2) \cup \A \\
\B^* &= (\B_1 \cap f(\B_2)) \cup \A
\end{align*}
\begin{diagram}
& &\B_f \\
&\ruLine & &\luLine \\
\B_1^* & & & &\B_2^* \\
&\luLine & &\ruLine \\
& &\B^* \\
& &\uLine \\
& &\A\\
\end{diagram}
From the diagram we see that
\begin{align*}
\delta(\B_f/\A) \leq \delta(\B_1^*/\A) + \delta(\B_2^*/\B^*)
\end{align*}
Thus all we need to do is to verify that
\begin{align*}
\delta(\B_2^*/\B^*) \leq \epsilon
\end{align*}
Let $\B'$ denote graph induced on all the vertices in $(f(B_2) / B_1) \cup A_2$.
Then $\B'$ is a substructure of $\B_2$ over $\A_2$. By minimality we get that $\delta(\B'/\A_2) \leq \epsilon$. Moreover $\delta(\B_2^*/\B^*) \leq \delta(\B'/\A_2)$ thus proving the claimed statement.
Then $\delta (\B^*/A_2)$ has to be less than $\delta (\B_2/\A_2)$ by minimality of $(\B_2, \A_2)$. Relative dimension of the whole construction has to be even smaller.
It is easy to show that this construction induces a proper subpair in $(\A_2, \B_2)$ which has to have smaller dimension.
Let $\phi(x,y)$ be a formula in a random graph with $|x|=|y|=1$ saying that there exists a minimal extension $M$ over $\{x,y\}$ of relative dimension $\epsilon$. Let $n$ be such that $n\epsilon < 1 < (n+1)\epsilon$. Then we argue that $vc(\phi) = n$.
Fix a $m$-strong (for any $m > |M|$) set of non-connected vertices $B$. Fix some $a$. We invesitgate the trace of $\phi(x, a)$ on $B$. Suppose we have $b_1, \ldots, b_k$ satisfying $\phi(b_i, a)$ as witnessed by $M_j$. Relative dimension of $M_1 \cup M_2 \cup \ldots \cup M_j \cup {a}$ is minimized when all $M_j$ are disjoint (by minimality). Thus for that dimension to be positive we can have at most $n$ extensions.
\begin{thebibliography}{9}
\bibitem{Laskowski}
Michael C. Laskowski, \textsl{A simpler axiomatization of the Shelah-Spencer almost sure theories,}
Israel J. Math. \textbf{161} (2007), 157-186. MR MR2350161
\end{thebibliography}
\end{document}