-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets_utils.py
229 lines (198 loc) · 8.66 KB
/
datasets_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from PIL import Image
from pathlib import Path
from torchvision import transforms
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import read_images
from evaluation_metrics import RewardModel
import os
class PreferenceDataset(Dataset):
"""
A dataset to prepare the reference and generated images with the prompts for fine-tuning the model.
"""
def __init__(
self,
reference_data_root,
generated_data_root,
prompt,
desc_prompts,
tokenizer,
size = 512,
center_crop=False,
rtype="i2i",
lambda_=0.3,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
# Load the reference images
self.reference_data_root = Path(reference_data_root)
if not self.reference_data_root.exists():
raise ValueError("reference images root doesn't exists.")
self.reference_images_path = list(Path(reference_data_root).iterdir())
self.num_reference_images = len(self.reference_images_path)
self.prompt = prompt
self.desc_prompts = desc_prompts
self._length = self.num_reference_images
# Load the generated images
self.generated_data_root = generated_data_root
if not Path(generated_data_root).exists():
raise ValueError("Generated images root doesn't exists.")
self.generated_data_root = generated_data_root
self.num_generated_images = torch.cuda.device_count()
self._length = max(self.num_generated_images , self.num_reference_images)
# Compute the reward
# reference_images = read_images(reference_data_root)
# generated_images = read_images(generated_data_root)
self.reward_model = RewardModel(reference_data_root, rtype=rtype)
self.reference_image_rewards = {}
self.generated_image_rewards = {}
reference_images = read_images(reference_data_root)
for i in range(len(desc_prompts)):
desc_prompt = desc_prompts[i]
generated_images_path = os.path.join(self.generated_data_root, desc_prompt)
generated_images = read_images(generated_images_path)
rewards = self.reward_model.get_reward(
[reference_images[i % self.num_reference_images]] + generated_images, [desc_prompt] * (1 + len(generated_images)),
lambda_=lambda_,
)
self.reference_image_rewards[desc_prompt] = rewards[0]
self.generated_image_rewards[desc_prompt] = rewards[1:]
# self.reference_rewards = reward_model.get_reward(reference_images)
# self.generated_rewards = reward_model.get_reward(generated_images)
# self.rewards = reward_fn(reference_images, generated_images)
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
example["prompt_ids"] = self.tokenizer(
self.prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
reference_image = Image.open(self.reference_images_path[index % self.num_reference_images])
if not reference_image.mode == "RGB":
reference_image = reference_image.convert("RGB")
desc_prompt = self.desc_prompts[index % len(self.desc_prompts)]
example["desc_prompt_ids"] = self.tokenizer(
desc_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
generated_images_path = list(Path(os.path.join(self.generated_data_root, desc_prompt)).iterdir())
n_generated_images = len(generated_images_path)
generated_image = Image.open(generated_images_path[index % n_generated_images])
if not generated_image.mode == "RGB":
generated_image = generated_image.convert("RGB")
pixel_values = torch.cat(
(self.image_transforms(reference_image),
self.image_transforms(generated_image)),
dim=0
)
example["pixel_values"] = pixel_values
# labels = torch.ones(1)
# reference_rewards = self.reference_rewards[index % self.num_reference_images]
# generated_rewards = self.generated_rewards[index % self.num_generated_images]
reference_rewards = self.reference_image_rewards[desc_prompt]
generated_rewards = self.generated_image_rewards[desc_prompt][index % self.num_generated_images]
difference = (reference_rewards - generated_rewards)
difference = torch.from_numpy(np.array(difference))
probs = torch.sigmoid(difference)
labels = torch.bernoulli(probs)
example["labels"] = labels
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the reference and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
reference_data_root,
reference_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
class_num=None,
size=512,
center_crop=False,
):
self.size = size
self.center_crop = center_crop
self.tokenizer = tokenizer
self.reference_data_root = Path(reference_data_root)
if not self.reference_data_root.exists():
raise ValueError("reference images root doesn't exists.")
self.reference_images_path = list(Path(reference_data_root).iterdir())
self.num_reference_images = len(self.reference_images_path)
self.reference_prompt = reference_prompt
self._length = self.num_reference_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = list(self.class_data_root.iterdir())
if class_num is not None:
self.num_class_images = min(len(self.class_images_path), class_num)
else:
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_reference_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.image_transforms = transforms.Compose(
[
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
reference_image = Image.open(self.reference_images_path[index % self.num_reference_images])
if not reference_image.mode == "RGB":
reference_image = reference_image.convert("RGB")
example["reference_images"] = self.image_transforms(reference_image)
example["reference_prompt_ids"] = self.tokenizer(
self.reference_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.class_data_root:
class_image = Image.open(self.class_images_path[index % self.num_class_images])
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
example["class_images"] = self.image_transforms(class_image)
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example