-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSatelite_problem_given_loss.m
executable file
·115 lines (91 loc) · 3.34 KB
/
Satelite_problem_given_loss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
%%
% A satelite based system has a transmitter (Ground Station) with gain:
G_tr_dBm = 70 % dBm - INPUT
%%
% The satelite (receiver) is separated by a distance of:
distance_km = 386000 % km - INPUT
%%
% The operating frequency is:
f_o_GHz = 3 % GHz - INPUT
%%
% Modulation format is BPSK. The system provides a data rate of:
data_rate = 100 % bigits/second - INPUT
%%
% and a probability of error of:
P_err = 0.01 % - INPUT
%%
% There is a power loss of:
P_loss_dB = 3 % dB - INPUT
%%
% a) Calculate the minimum SNR required for such a system and what is the maximum
% noise power density and noise temperature of the receiver
%
% $$\textrm{SNR}=\frac{1}{2}{\left\lbrack Q^{-1} \left(P_{\textrm{err}} \right)\right\rbrack
% }^2$$
% Rearrange P_err = Q(sqrt(2*SNR_lin))
SNR_lin = qfuncinv(P_err)^2 / 2 % - OUTPUT ------------>
SNR_dB = 10 * log10(SNR_lin) % - OUTPUT --------------->
% Convert km to m
distance_m = distance_km * 1e3;
% Convert GHz to Hz
f_o = f_o_GHz * 1e9;
%%
% $$P_{\textrm{TR}} ={10}^{\left(\frac{P_{\textrm{dBm}} }{10}\right)} 1\textrm{mW}$$
% Convert from dBm to linear
P_tr = 10^(G_tr_dBm / 10) * 1e-3
%%
% $$P_{\textrm{loss},\textrm{dB}} =-10\;\log_{10} \left(\frac{P_{\textrm{loss}}
% }{P_{\textrm{TR}} }\right)$$ $$P_{\textrm{loss},\textrm{dB}} =10\;\log_{10}
% \left(\frac{P_{\textrm{TR}} }{P_{\textrm{RX}} }\right)$$
%
% $$P_{\textrm{loss}} =\frac{P_{\textrm{TR}} }{{10}^{\left(\frac{P_{\textrm{loss},\textrm{dB}}
% }{10}\right)} }$$
% Convert from dB to linear
P_loss_lin = P_tr / 10^(P_loss_dB / 10)
% Received power
P_rx = P_tr - P_loss_lin
%%
% $$\textrm{SNR}=\frac{P_{\textrm{RX}} }{N_o W}=\frac{P_{\textrm{RX}} }{k\;TR_S
% }$$
%
% $$T=\frac{P_{\textrm{RX}} }{k\;R_S \;\textrm{SNR}}$$
% Boltzmann Constant
k = 1.38e-23
T_noise = P_rx / (k * data_rate * SNR_lin) % - OUTPUT -------->
% Power Spectral Density = k * T_noise (in joules)
N_o = k * T_noise % - OUTPUT -------------------------->
%%
% b) Calculate bandwidth needed for such a channel and its Shannon capacity
bandwidth = data_rate
% Capacity = BW * log2(1 + SNR) (in bits/second)
capacity = bandwidth * log2(1 + SNR_lin) % - OUTPUT ---->
%%
% c) What is the capacity of this system per use of such system
% Confusion H(e) = elog2(e) + (1 - e)log2(1 - e)
confusion = -P_err * log2(P_err) - (1 - P_err) * log2(1 - P_err);
% C' = 1 - H(e) (in bits/use)
cap_per_use = 1 - confusion % - OUTPUT ----->
%%
% d) How long will it take to transmit a single black and white image without
% compression with dimensons:
dimension = 256 % - INPUT - Likely won't change
%%
% and each pixel is represented by
bits_per_pixel = 8 % - INPUT - Likely won't change
%%
% Answer:
% number of bits in an image = number of pixels * bits/pixel
bit_count = dimension^2 * bits_per_pixel
% Time it takes to send those bits (in seconds)
transmission_time = bit_count / data_rate % - OUTPUT --------------------->
%%
% e) How many errors will happen during this transmission?
% Number of errors = number of bits * probability of error
number_of_errors = ceil(bit_count * P_err) % - OUTPUT -------------------->
%%
% f) How long does it take for a signal to propagate from the transmitter to
% the receiver?
% Radiowaves travel at near the speed of light
c = 3e8;
% Time (in seconds) = distance (in m) / speed (in m/s)
propagation_time = distance_m / c % - OUTPUT ----------------------------->