forked from sdrangan/wirelesscomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprob_antennas.tex
298 lines (263 loc) · 9.28 KB
/
prob_antennas.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
\documentclass[11pt]{article}
\usepackage{fullpage}
\usepackage{amsmath, amssymb, bm, cite, epsfig, psfrag}
\usepackage{graphicx}
\usepackage{float}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{listings}
\usepackage{cite}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{enumitem}
\usetikzlibrary{shapes,arrows}
\usepackage{mdframed}
\usepackage{mcode}
%\usetikzlibrary{dsp,chains}
%\restylefloat{figure}
%\theoremstyle{plain} \newtheorem{theorem}{Theorem}
%\theoremstyle{definition} \newtheorem{definition}{Definition}
\def\del{\partial}
\def\ds{\displaystyle}
\def\ts{\textstyle}
\def\beq{\begin{equation}}
\def\eeq{\end{equation}}
\def\beqa{\begin{eqnarray}}
\def\eeqa{\end{eqnarray}}
\def\beqan{\begin{eqnarray*}}
\def\eeqan{\end{eqnarray*}}
\def\nn{\nonumber}
\def\binomial{\mathop{\mathrm{binomial}}}
\def\half{{\ts\frac{1}{2}}}
\def\Half{{\frac{1}{2}}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\Q{{\mathbb{Q}}}
\def\R{{\mathbb{R}}}
\def\C{{\mathbb{C}}}
\def\argmin{\mathop{\mathrm{arg\,min}}}
\def\argmax{\mathop{\mathrm{arg\,max}}}
%\def\span{\mathop{\mathrm{span}}}
\def\diag{\mathop{\mathrm{diag}}}
\def\x{\times}
\def\limn{\lim_{n \rightarrow \infty}}
\def\liminfn{\liminf_{n \rightarrow \infty}}
\def\limsupn{\limsup_{n \rightarrow \infty}}
\def\GV{Guo and Verd{\'u}}
\def\MID{\,|\,}
\def\MIDD{\,;\,}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{assumption}{Assumption}
\newtheorem{claim}{Claim}
\def\qed{\mbox{} \hfill $\Box$}
\setlength{\unitlength}{1mm}
\def\bhat{\widehat{b}}
\def\ehat{\widehat{e}}
\def\phat{\widehat{p}}
\def\qhat{\widehat{q}}
\def\rhat{\widehat{r}}
\def\shat{\widehat{s}}
\def\uhat{\widehat{u}}
\def\ubar{\overline{u}}
\def\vhat{\widehat{v}}
\def\xhat{\widehat{x}}
\def\xbar{\overline{x}}
\def\zhat{\widehat{z}}
\def\zbar{\overline{z}}
\def\la{\leftarrow}
\def\ra{\rightarrow}
\def\MSE{\mbox{\small \sffamily MSE}}
\def\SNR{\mbox{\small \sffamily SNR}}
\def\SINR{\mbox{\small \sffamily SINR}}
\def\arr{\rightarrow}
\def\Exp{\mathbb{E}}
\def\var{\mbox{var}}
\def\Tr{\mbox{Tr}}
\def\tm1{t\! - \! 1}
\def\tp1{t\! + \! 1}
\def\Xset{{\cal X}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\abf}{\mathbf{a}}
\newcommand{\bbf}{\mathbf{b}}
\newcommand{\dbf}{\mathbf{d}}
\newcommand{\ebf}{\mathbf{e}}
\newcommand{\gbf}{\mathbf{g}}
\newcommand{\hbf}{\mathbf{h}}
\newcommand{\pbf}{\mathbf{p}}
\newcommand{\pbfhat}{\widehat{\mathbf{p}}}
\newcommand{\qbf}{\mathbf{q}}
\newcommand{\qbfhat}{\widehat{\mathbf{q}}}
\newcommand{\rbf}{\mathbf{r}}
\newcommand{\rbfhat}{\widehat{\mathbf{r}}}
\newcommand{\sbf}{\mathbf{s}}
\newcommand{\sbfhat}{\widehat{\mathbf{s}}}
\newcommand{\ubf}{\mathbf{u}}
\newcommand{\ubfhat}{\widehat{\mathbf{u}}}
\newcommand{\utildebf}{\tilde{\mathbf{u}}}
\newcommand{\vbf}{\mathbf{v}}
\newcommand{\vbfhat}{\widehat{\mathbf{v}}}
\newcommand{\wbf}{\mathbf{w}}
\newcommand{\wbfhat}{\widehat{\mathbf{w}}}
\newcommand{\xbf}{\mathbf{x}}
\newcommand{\xbfhat}{\widehat{\mathbf{x}}}
\newcommand{\xbfbar}{\overline{\mathbf{x}}}
\newcommand{\ybf}{\mathbf{y}}
\newcommand{\zbf}{\mathbf{z}}
\newcommand{\zbfbar}{\overline{\mathbf{z}}}
\newcommand{\zbfhat}{\widehat{\mathbf{z}}}
\newcommand{\Ahat}{\widehat{A}}
\newcommand{\Abf}{\mathbf{A}}
\newcommand{\Bbf}{\mathbf{B}}
\newcommand{\Cbf}{\mathbf{C}}
\newcommand{\Bbfhat}{\widehat{\mathbf{B}}}
\newcommand{\Dbf}{\mathbf{D}}
\newcommand{\Ebf}{\mathbf{E}}
\newcommand{\Gbf}{\mathbf{G}}
\newcommand{\Hbf}{\mathbf{H}}
\newcommand{\Kbf}{\mathbf{K}}
\newcommand{\Pbf}{\mathbf{P}}
\newcommand{\Phat}{\widehat{P}}
\newcommand{\Qbf}{\mathbf{Q}}
\newcommand{\Rbf}{\mathbf{R}}
\newcommand{\Rhat}{\widehat{R}}
\newcommand{\Sbf}{\mathbf{S}}
\newcommand{\Ubf}{\mathbf{U}}
\newcommand{\Vbf}{\mathbf{V}}
\newcommand{\Wbf}{\mathbf{W}}
\newcommand{\Xhat}{\widehat{X}}
\newcommand{\Xbf}{\mathbf{X}}
\newcommand{\Ybf}{\mathbf{Y}}
\newcommand{\Zbf}{\mathbf{Z}}
\newcommand{\Zhat}{\widehat{Z}}
\newcommand{\Zbfhat}{\widehat{\mathbf{Z}}}
\def\alphabf{{\boldsymbol \alpha}}
\def\betabf{{\boldsymbol \beta}}
\def\mubf{{\boldsymbol \mu}}
\def\lambdabf{{\boldsymbol \lambda}}
\def\etabf{{\boldsymbol \eta}}
\def\xibf{{\boldsymbol \xi}}
\def\taubf{{\boldsymbol \tau}}
\def\sigmahat{{\widehat{\sigma}}}
\def\thetabf{{\bm{\theta}}}
\def\thetabfhat{{\widehat{\bm{\theta}}}}
\def\thetahat{{\widehat{\theta}}}
\def\mubar{\overline{\mu}}
\def\muavg{\mu}
\def\sigbf{\bm{\sigma}}
\def\etal{\emph{et al.}}
\def\Ggothic{\mathfrak{G}}
\def\Pset{{\mathcal P}}
\newcommand{\bigCond}[2]{\bigl({#1} \!\bigm\vert\! {#2} \bigr)}
\newcommand{\BigCond}[2]{\Bigl({#1} \!\Bigm\vert\! {#2} \Bigr)}
\def\Rect{\mathop{Rect}}
\def\sinc{\mathop{sinc}}
\def\Real{\mathrm{Re}}
\def\Imag{\mathrm{Im}}
\newcommand{\tran}{^{\text{\sf T}}}
\newcommand{\herm}{^{\text{\sf H}}}
% Solution environment
\definecolor{lightgray}{gray}{0.95}
\newmdenv[linecolor=white,backgroundcolor=lightgray,frametitle=Solution:]{solution}
\begin{document}
\title{Problems: Antennas and Free-Space Propagation\\
EL-GY 6023. Wireless Communications}
\author{Prof.\ Sundeep Rangan}
\date{}
\maketitle
In all the problems below, unless specified otherwise, $\phi$ is the
azimuth angle and $\theta$ is elevation angle.
\begin{enumerate}
\item \emph{EM wave}: Suppose the E-field is,
\[
\Ebf(x,y,z,t) = E_0 \ebf_y \cos(2\pi f t - kx).
\]
\begin{enumerate}[label=(\alph*)]
\item What is direction of motion?
\item If the average power flux is $10^{-8}$ mW/m$^2$, what is $E_0$?
Assume the characteristic impedance is $\eta_0 = 377 \Omega$.
\item If the frequency is $f=$ 1.5 GHz, what is $k$?
What are the units of $k$?
\end{enumerate}
\item \emph{EM polarization}: An EM plane wave has
a power flux of $10^{-8}$ mW/m$^2$ in a horizontal polarization (along the $x$-axis)
and $2(10)^{-8}$ mW/m$^2$ in a vertical polarization (along the $y$-axis).
Assume the characteristic impedance is $\eta_0 = 377 \Omega$.
\begin{enumerate}[label=(\alph*)]
\item What is combined $E$-field value and its direction?
\item What is the direction of motion?
\item What is the total power flux?
\end{enumerate}
\item \emph{dBm to linear conversions:}
\begin{enumerate}[label=(\alph*)]
\item Convert the following to mW: 17 dBm, -73 dBm, -97 dBW.
\item Convert the following to dBm: 250 mW, $8(10)^{-8}$ W, $5(10)^{-6}$ mW
\end{enumerate}
\item \emph{Spherical-cartesian conversions:}
\begin{enumerate}[label=(\alph*)]
\item Convert $(r,\phi,\theta)=(2,45^\circ,30^\circ)$ to $(x,y,z)$.
\item Convert $(x,y,z) = (1,2,3)$ to $(r,\phi,\theta)$.
\item Convert $(x,y,z) = (1,-2,3)$ to $(r,\phi,\theta)$.
\end{enumerate}
\item \emph{Rotation matrices}: The \emph{rotation matrix}
$R(\theta,\phi)$ is the $3 \times 3$ matrix such that $R(\theta,\phi)\rbf$ rotates
the vector $\rbf$ by an angle pair $(\theta,\phi)$.
You can read more about this on wikipedia or other sources.
\begin{enumerate}[label=(\alph*)]
\item Find the entries of $R(\theta,\phi)$.
\item Show $R(\theta,\phi)$ is \emph{orthogonal} meaning
$R(\theta,\phi)^{-1}=R(\theta,\phi)\tran$.
\item Is
\[
R(\theta_1,\phi_1)R(\theta_2,\phi_2) = R(\theta_2,\phi_2)R(\theta_1,\phi_1)?
\]
That is, do the order of rotations matter?
Prove or find a counter-example.
\end{enumerate}
\item \emph{Angular areas:} Find the angular area in steradians of
following sets of angles:
\begin{enumerate}[label=(\alph*)]
\item $A_1 = \left\{ (\phi,\theta) ~ | ~ \phi \in [-30,30],~ \theta \in [-90,90]\right\}$
\item $A_2 = \left\{ (\phi,\theta) ~|~ \phi \in [-30,30], ~ \theta \in [-45,45]\right\}$
\end{enumerate}
\item \emph{Directivity:} Suppose an antenna radiates power uniformly in
the angular beam $\phi \in [-30,30], \theta \in [-45,45]$ and radiates
no power at other angles. What is the directivity of the antenna?
\item \emph{Radiation intensity:} A 170 cm x 40 cm object
(roughly the size of a human) is 800m from a base station.
If the antenna transmits 250~mW isotropically, how much power
reaches the human? Use reasonable approximations that the human is far from the
transmitter.
\item \emph{Radiation integration:} The radiation density for some antenna is,
\[
U(\phi,\theta) = A\cos^2(\phi), \quad A = 100 \mbox{mW/sr}.
\]
\begin{enumerate}[label=(\alph*)]
\item What is the total radiated power in mW and dBm?
\item What is the directivity of the antenna in linear scale and in dBi?
\end{enumerate}
\item \emph{Numerically integrating patterns:}
Write a short MATLAB function,
\begin{lstlisting}
function [totPow, dir] = powerDirectivity(az,el,E,eta)
\end{lstlisting}
that computes the total power and directivity as a function of the $E$-field
values. The E field is specified as a complex matrix \mcode{E(i,j)}
at angles \mcode{az(i),el(j)}. You can assume that the angles are uniformly
spaced over the total angular space. The total power output
\mcode{totPow} should be a
scalar representing the total radiated power in dBm and the directivity output
should be \mcode{dir(i,j)} should be a matrix.
\item \emph{Friis' Law}: A transmitter radiates 100 mW at a carrier $f_c = 2.1$ GHz
with a directional gain of $G_t = 10$ dBi.
Suppose the receiver is $d = 200$ m from the transmitter and the path is free space.
What is the received power if:
\begin{enumerate}[label=(\alph*)]
\item The effective received aperture is 1 cm$^2$.
\item The receiver gain is $G_r = 5$ dBi.
\end{enumerate}
\end{enumerate}
\end{document}