-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheval_tuber_jhmdb.py
92 lines (74 loc) · 3.2 KB
/
eval_tuber_jhmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import argparse
import datetime
import time
import torch
import torch.optim
from tensorboardX import SummaryWriter
from models.tuber_ava import build_model
from utils.model_utils import deploy_model, load_model
from utils.video_action_recognition import validate_tuber_ucf_detection
from pipelines.video_action_recognition_config import get_cfg_defaults
from pipelines.launch import spawn_workers
from utils.utils import build_log_dir
from datasets.jhmdb_frame import build_dataloader
from utils.lr_scheduler import build_scheduler
import os
def main_worker(cfg):
# create tensorboard and logs
if cfg.DDP_CONFIG.GPU_WORLD_RANK == 0:
tb_logdir = build_log_dir(cfg)
writer = SummaryWriter(log_dir=tb_logdir)
else:
writer = None
# cfg.freeze()
# create model
print('Creating TubeR model: %s' % cfg.CONFIG.MODEL.NAME)
model, criterion, postprocessors = build_model(cfg)
model = deploy_model(model, cfg, is_tuber=True)
num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('Number of parameters in the model: %6.2fM' % (num_parameters / 1000000))
# create dataset and dataloader
train_loader, val_loader, train_sampler, val_sampler, mg_sampler = build_dataloader(cfg)
print("test sampler", len(train_loader))
# create criterion
criterion = criterion.cuda()
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and "class_embed" not in n and "query_embed" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": cfg.CONFIG.TRAIN.LR_BACKBONE,
},
{
"params": [p for n, p in model.named_parameters() if "class_embed" in n and p.requires_grad],
"lr": cfg.CONFIG.TRAIN.LR, #10
},
{
"params": [p for n, p in model.named_parameters() if "query_embed" in n and p.requires_grad],
"lr": cfg.CONFIG.TRAIN.LR, #10
},
]
# param_dicts = model.parameters()
# create optimizer
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.CONFIG.TRAIN.LR, weight_decay=cfg.CONFIG.TRAIN.W_DECAY)
# create lr scheduler
if cfg.CONFIG.TRAIN.LR_POLICY == "step":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30,60], gamma=0.1)
else:
lr_scheduler = build_scheduler(cfg, optimizer, len(train_loader))
# docs: add resume option
if cfg.CONFIG.MODEL.LOAD:
model, _ = load_model(model, cfg, load_fc=cfg.CONFIG.MODEL.LOAD_FC)
print('Start training...')
start_time = time.time()
max_accuracy = 0.0
validate_tuber_ucf_detection(cfg, model, criterion, postprocessors, val_loader, 0, writer)
print("eval finished")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train video action recognition transformer models.')
parser.add_argument('--config-file',
default='/xxx/Tuber_JHMDB_CSN-152.yaml',
help='path to config file.')
args = parser.parse_args()
cfg = get_cfg_defaults()
cfg.merge_from_file(args.config_file)
spawn_workers(main_worker, cfg)