Skip to content

Commit 9f8fef2

Browse files
authored
Update model link to Hugging Face (#353)
*Issue #, if available:* *Description of changes:* By submitting this pull request, I confirm that you can use, modify, copy, and redistribute this contribution, under the terms of your choice.
1 parent c60bd2c commit 9f8fef2

File tree

4 files changed

+13
-10
lines changed

4 files changed

+13
-10
lines changed

.github/workflows/eval-model.yml

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -36,13 +36,13 @@ jobs:
3636
run: pip install ".[dev]" -f https://download.pytorch.org/whl/cpu/torch_stable.html
3737

3838
- name: Run Eval Script for Chronos-2
39-
run: python scripts/evaluation/evaluate.py chronos-2 ci/evaluate/backtest_config.yaml $CHRONOS_2_RESULTS_CSV --model-id=s3://autogluon/chronos-2 --device=cpu --torch-dtype=float32
39+
run: python scripts/evaluation/evaluate.py chronos-2 ci/evaluate/backtest_config.yaml $CHRONOS_2_RESULTS_CSV --model-id=amazon/chronos-2 --device=cpu --torch-dtype=float32
4040

4141
- name: Print Chronos-2 CSV
4242
run: cat $CHRONOS_2_RESULTS_CSV
4343

4444
- name: Run Eval Script for Chronos-Bolt
4545
run: python scripts/evaluation/evaluate.py chronos-bolt ci/evaluate/backtest_config.yaml $CHRONOS_BOLT_RESULTS_CSV --model-id=amazon/chronos-bolt-small --device=cpu --torch-dtype=float32
46-
46+
4747
- name: Print Chronos-Bolt CSV
4848
run: cat $CHRONOS_BOLT_RESULTS_CSV

README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919

2020

2121
## 🚀 News
22-
- **20 Oct 2025**: 🚀 [Chronos-2](https://arxiv.org/abs/2510.15821) released. It offers _zero-shot_ support for univariate, multivariate, and covariate-informed forecasting tasks. Chronos-2 achieves the best performance on fev-bench, GIFT-Eval and Chronos Benchmark II amongst pretrained models. Check out [this notebook](notebooks/chronos-2-quickstart.ipynb) to get started with Chronos-2.
22+
- **20 Oct 2025**: 🚀 [Chronos-2](https://huggingface.co/amazon/chronos-2) released. It offers _zero-shot_ support for univariate, multivariate, and covariate-informed forecasting tasks. Chronos-2 achieves the best performance on fev-bench, GIFT-Eval and Chronos Benchmark II amongst pretrained models. Check out [this notebook](notebooks/chronos-2-quickstart.ipynb) to get started with Chronos-2.
2323
- **14 Feb 2025**: 🚀 Chronos-Bolt is now available on Amazon SageMaker JumpStart! Check out the [tutorial notebook](notebooks/deploy-chronos-bolt-to-amazon-sagemaker.ipynb) to learn how to deploy Chronos endpoints for production use in 3 lines of code.
2424
- **12 Dec 2024**: 📊 We released [`fev`](https://github.com/autogluon/fev), a lightweight package for benchmarking time series forecasting models based on the [Hugging Face `datasets`](https://huggingface.co/docs/datasets/en/index) library.
2525
- **26 Nov 2024**: ⚡️ Chronos-Bolt models released [on HuggingFace](https://huggingface.co/collections/amazon/chronos-models-65f1791d630a8d57cb718444). Chronos-Bolt models are more accurate (5% lower error), up to 250x faster and 20x more memory efficient than the original Chronos models of the same size!
@@ -39,7 +39,7 @@ This package provides an interface to the Chronos family of **pretrained time se
3939

4040
| Model ID | Parameters |
4141
| ---------------------------------------------------------------------- | ---------- |
42-
| [`s3://autogluon/chronos-2`](https://arxiv.org/abs/2510.15821) | 120M |
42+
| [`amazon/chronos-2`](https://huggingface.co/amazon/chronos-2) | 120M |
4343
| [`amazon/chronos-bolt-tiny`](https://huggingface.co/amazon/chronos-bolt-tiny) | 9M |
4444
| [`amazon/chronos-bolt-mini`](https://huggingface.co/amazon/chronos-bolt-mini) | 21M |
4545
| [`amazon/chronos-bolt-small`](https://huggingface.co/amazon/chronos-bolt-small) | 48M |
@@ -48,7 +48,7 @@ This package provides an interface to the Chronos family of **pretrained time se
4848
| [`amazon/chronos-t5-mini`](https://huggingface.co/amazon/chronos-t5-mini) | 20M |
4949
| [`amazon/chronos-t5-small`](https://huggingface.co/amazon/chronos-t5-small) | 46M |
5050
| [`amazon/chronos-t5-base`](https://huggingface.co/amazon/chronos-t5-base) | 200M |
51-
| [`amazon/chronos-t5-large`](https://huggingface.co/amazon/chronos-t5-large) | 710M |
51+
| [`amazon/chronos-t5-large`](https://huggingface.co/amazon/chronos-t5-large) | 710M |
5252

5353
</div>
5454

@@ -68,7 +68,7 @@ A minimal example showing how to perform forecasting using Chronos-2:
6868
import pandas as pd # requires: pip install 'pandas[pyarrow]'
6969
from chronos import Chronos2Pipeline
7070

71-
pipeline = Chronos2Pipeline.from_pretrained("s3://autogluon/chronos-2", device_map="cuda")
71+
pipeline = Chronos2Pipeline.from_pretrained("amazon/chronos-2", device_map="cuda")
7272

7373
# Load historical target values and past values of covariates
7474
context_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/train.parquet")

notebooks/chronos-2-quickstart.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@
3636
},
3737
{
3838
"cell_type": "code",
39-
"execution_count": 1,
39+
"execution_count": null,
4040
"id": "fcc7e496",
4141
"metadata": {},
4242
"outputs": [],
@@ -53,7 +53,7 @@
5353
"\n",
5454
"# Load the Chronos-2 pipeline\n",
5555
"# GPU recommended for faster inference, but CPU is also supported\n",
56-
"pipeline: Chronos2Pipeline = BaseChronosPipeline.from_pretrained(\"s3://autogluon/chronos-2/\", device_map=\"cuda\")"
56+
"pipeline: Chronos2Pipeline = BaseChronosPipeline.from_pretrained(\"amazon/chronos-2\", device_map=\"cuda\")"
5757
]
5858
},
5959
{

test/test_chronos2.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,10 +13,9 @@
1313
import torch
1414

1515
from chronos import BaseChronosPipeline, Chronos2Pipeline
16-
from chronos.chronos2.dataset import convert_df_input_to_list_of_dicts_input
1716
from chronos.chronos2.config import Chronos2CoreConfig
17+
from chronos.chronos2.dataset import convert_df_input_to_list_of_dicts_input
1818
from chronos.chronos2.layers import MHA
19-
2019
from test.util import validate_tensor
2120

2221
DUMMY_MODEL_PATH = Path(__file__).parent / "dummy-chronos2-model"
@@ -35,6 +34,10 @@ def test_base_chronos2_pipeline_loads_from_s3():
3534
BaseChronosPipeline.from_pretrained("s3://autogluon/chronos-2", device_map="cpu")
3635

3736

37+
def test_base_chronos2_pipeline_loads_from_hf():
38+
BaseChronosPipeline.from_pretrained("amazon/chronos-2", device_map="cpu")
39+
40+
3841
@pytest.mark.parametrize(
3942
"inputs, prediction_length, expected_output_shapes",
4043
[

0 commit comments

Comments
 (0)