-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathall_wgsl.wgsl
executable file
·2991 lines (2533 loc) · 106 KB
/
all_wgsl.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#import bevy_pbr::mesh_vertex_output VertexOutput
#import bevy_pbr::mesh_view_bindings view
#import bevy_pbr::pbr_types STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT
#import bevy_core_pipeline::tonemapping tone_mapping
#import bevy_pbr::pbr_functions as fns
@group(1) @binding(0) var my_array_texture: texture_2d_array<f32>;
@group(1) @binding(1) var my_array_texture_sampler: sampler;
@fragment
fn fragment(
@builtin(front_facing) is_front: bool,
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
let layer = i32(mesh.world_position.x) & 0x3;
// Prepare a 'processed' StandardMaterial by sampling all textures to resolve
// the material members
var pbr_input: fns::PbrInput = fns::pbr_input_new();
pbr_input.material.base_color = texture_sample(my_array_texture, my_array_texture_sampler, mesh.uv, layer);
#ifdef VERTEX_COLORS
pbr_input.material.base_color = pbr_input.material.base_color * mesh.color;
#endif
pbr_input.frag_coord = mesh.position;
pbr_input.world_position = mesh.world_position;
pbr_input.world_normal = fns::prepare_world_normal(
mesh.world_normal,
(pbr_input.material.flags & STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u,
is_front,
);
pbr_input.is_orthographic = view.projection[3].w == 1.0;
pbr_input.N = fns::apply_normal_mapping(
pbr_input.material.flags,
mesh.world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
mesh.world_tangent,
#endif
#endif
mesh.uv,
view.mip_bias,
);
pbr_input.V = fns::calculate_view(mesh.world_position, pbr_input.is_orthographic);
return tone_mapping(fns::pbr(pbr_input), view.color_grading);
}
#import bevy_pbr::mesh_view_bindings
#import bevy_pbr::mesh_bindings
#import bevy_pbr::forward_io::VertexOutput
@group(1) @binding(0) var test_texture_1d: texture_1d<f32>;
@group(1) @binding(1) var test_texture_1d_sampler: sampler;
@group(1) @binding(2) var test_texture_2d: texture_2d<f32>;
@group(1) @binding(3) var test_texture_2d_sampler: sampler;
@group(1) @binding(4) var test_texture_2d_array: texture_2d_array<f32>;
@group(1) @binding(5) var test_texture_2d_array_sampler: sampler;
@group(1) @binding(6) var test_texture_cube: texture_cube<f32>;
@group(1) @binding(7) var test_texture_cube_sampler: sampler;
@group(1) @binding(8) var test_texture_cube_array: texture_cube_array<f32>;
@group(1) @binding(9) var test_texture_cube_array_sampler: sampler;
@group(1) @binding(10) var test_texture_3d: texture_3d<f32>;
@group(1) @binding(11) var test_texture_3d_sampler: sampler;
@fragment
fn fragment(in: VertexOutput) {}
#import bevy_pbr::mesh_view_bindings view
#import bevy_pbr::mesh_vertex_output VertexOutput
#import bevy_pbr::utils coords_to_viewport_uv
@group(1) @binding(0) var texture: texture_2d<f32>;
@group(1) @binding(1) var texture_sampler: sampler;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
let viewport_uv = coords_to_viewport_uv(mesh.position.xy, view.viewport);
let color = texture_sample(texture, texture_sampler, viewport_uv);
return color;
}
#import bevy_pbr::forward_io::VertexOutput
struct CustomMaterial {
color: vec4<f32>,
};
@group(1) @binding(0) var<uniform> material: CustomMaterial;
@group(1) @binding(1) var base_color_texture: texture_2d<f32>;
@group(1) @binding(2) var base_color_sampler: sampler;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
return material.color * texture_sample(base_color_texture, base_color_sampler, mesh.uv);
}
#import bevy_pbr::mesh_view_bindings
#import bevy_pbr::mesh_bindings
#import bevy_pbr::mesh_vertex_output VertexOutput
#import bevy_pbr::utils PI
#ifdef TONEMAP_IN_SHADER
#import bevy_core_pipeline::tonemapping tone_mapping
#endif
// Sweep across hues on y axis with value from 0.0 to +15EV across x axis
// quantized into 24 steps for both axis.
fn color_sweep(uv: vec2<f32>) -> vec3<f32> {
var uv = uv;
let steps = 24.0;
uv.y = uv.y * (1.0 + 1.0 / steps);
let ratio = 2.0;
let h = PI * 2.0 * floor(1.0 + steps * uv.y) / steps;
let L = floor(uv.x * steps * ratio) / (steps * ratio) - 0.5;
var color = vec3(0.0);
if uv.y < 1.0 {
color = cos(h + vec3(0.0, 1.0, 2.0) * PI * 2.0 / 3.0);
let max_rgb = max(color.r, max(color.g, color.b));
let min_rgb = min(color.r, min(color.g, color.b));
color = exp(15.0 * L) * (color - min_rgb) / (max_rgb - min_rgb);
} else {
color = vec3(exp(15.0 * L));
}
return color;
}
fn hsv_to_srgb(c: vec3<f32>) -> vec3<f32> {
let K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
let p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, vec3(0.0), vec3(1.0)), c.y);
}
// Generates a continuous sRGB sweep.
fn continuous_hue(uv: vec2<f32>) -> vec3<f32> {
return hsv_to_srgb(vec3(uv.x, 1.0, 1.0)) * max(0.0, exp2(uv.y * 9.0) - 1.0);
}
@fragment
fn fragment(
in: VertexOutput,
) -> @location(0) vec4<f32> {
var uv = in.uv;
var out = vec3(0.0);
if uv.y > 0.5 {
uv.y = 1.0 - uv.y;
out = color_sweep(vec2(uv.x, uv.y * 2.0));
} else {
out = continuous_hue(vec2(uv.y * 2.0, uv.x));
}
var color = vec4(out, 1.0);
#ifdef TONEMAP_IN_SHADER
color = tone_mapping(color, bevy_pbr::mesh_view_bindings::view.color_grading);
#endif
return color;
}
#import bevy_pbr::mesh_bindings mesh
#import bevy_pbr::mesh_functions get_model_matrix, mesh_position_local_to_clip
struct CustomMaterial {
color: vec4<f32>,
};
@group(1) @binding(0) var<uniform> material: CustomMaterial;
struct Vertex {
@builtin(instance_index) instance_index: u32,
@location(0) position: vec3<f32>,
@location(1) blend_color: vec4<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) blend_color: vec4<f32>,
};
@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
var out: VertexOutput;
out.clip_position = mesh_position_local_to_clip(
get_model_matrix(vertex.instance_index),
vec4<f32>(vertex.position, 1.0),
);
out.blend_color = vertex.blend_color;
return out;
}
struct FragmentInput {
@location(0) blend_color: vec4<f32>,
};
@fragment
fn fragment(input: FragmentInput) -> @location(0) vec4<f32> {
return material.color * input.blend_color;
}
// This shader computes the chromatic aberration effect
#import bevy_pbr::utils
// Since post processing is a fullscreen effect, we use the fullscreen vertex shader provided by bevy.
// This will import a vertex shader that renders a single fullscreen triangle.
//
// A fullscreen triangle is a single triangle that covers the entire screen.
// The box in the top left in that diagram is the screen. The 4 x are the corner of the screen
//
// Y axis
// 1 | x-----x......
// 0 | | s | . ´
// -1 | x_____x´
// -2 | : .´
// -3 | :´
// +--------------- X axis
// -1 0 1 2 3
//
// As you can see, the triangle ends up bigger than the screen.
//
// You don't need to worry about this too much since bevy will compute the correct UVs for you.
#import bevy_core_pipeline::fullscreen_vertex_shader FullscreenVertexOutput
@group(0) @binding(0) var screen_texture: texture_2d<f32>;
@group(0) @binding(1) var texture_sampler: sampler;
struct PostProcessSettings {
intensity: f32,
#ifdef SIXTEEN_BYTE_ALIGNMENT
// WebGL2 structs must be 16 byte aligned.
_webgl2_padding: vec3<f32>
#endif
}
@group(0) @binding(2) var<uniform> settings: PostProcessSettings;
@fragment
fn fragment(in: FullscreenVertexOutput) -> @location(0) vec4<f32> {
// Chromatic aberration strength
let offset_strength = settings.intensity;
// Sample each color channel with an arbitrary shift
return vec4<f32>(
texture_sample(screen_texture, texture_sampler, in.uv + vec2<f32>(offset_strength, -offset_strength)).r,
texture_sample(screen_texture, texture_sampler, in.uv + vec2<f32>(-offset_strength, 0.0)).g,
texture_sample(screen_texture, texture_sampler, in.uv + vec2<f32>(0.0, offset_strength)).b,
1.0
);
}
#import bevy_pbr::forward_io::VertexOutput
struct CustomMaterial {
color: vec4<f32>,
};
@group(1) @binding(0) var<uniform> material: CustomMaterial;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
#ifdef IS_RED
return vec4<f32>(1.0, 0.0, 0.0, 1.0);
#else
return material.color;
#endif
}
@group(0) @binding(0) var texture: texture_storage_2d<rgba8unorm, read_write>;
fn hash(value: u32) -> u32 {
var state = value;
state = state ^ 2747636419u;
state = state * 2654435769u;
state = state ^ state >> 16u;
state = state * 2654435769u;
state = state ^ state >> 16u;
state = state * 2654435769u;
return state;
}
fn random_float(value: u32) -> f32 {
return f32(hash(value)) / 4294967295.0;
}
@compute @workgroup_size(8, 8, 1)
fn init(@builtin(global_invocation_id) invocation_id: vec3<u32>, @builtin(num_workgroups) num_workgroups: vec3<u32>) {
let location = vec2<i32>(i32(invocation_id.x), i32(invocation_id.y));
let random_number = random_float(invocation_id.y * num_workgroups.x + invocation_id.x);
let alive = random_number > 0.9;
let color = vec4<f32>(f32(alive));
texture_store(texture, location, color);
}
fn is_alive(location: vec2<i32>, offset_x: i32, offset_y: i32) -> i32 {
let value: vec4<f32> = texture_load(texture, location + vec2<i32>(offset_x, offset_y));
return i32(value.x);
}
fn count_alive(location: vec2<i32>) -> i32 {
return is_alive(location, -1, -1) +
is_alive(location, -1, 0) +
is_alive(location, -1, 1) +
is_alive(location, 0, -1) +
is_alive(location, 0, 1) +
is_alive(location, 1, -1) +
is_alive(location, 1, 0) +
is_alive(location, 1, 1);
}
@compute @workgroup_size(8, 8, 1)
fn update(@builtin(global_invocation_id) invocation_id: vec3<u32>) {
let location = vec2<i32>(i32(invocation_id.x), i32(invocation_id.y));
let n_alive = count_alive(location);
var alive: bool;
if (n_alive == 3) {
alive = true;
} else if (n_alive == 2) {
let currently_alive = is_alive(location, 0, 0);
alive = bool(currently_alive);
} else {
alive = false;
}
let color = vec4<f32>(f32(alive));
storage_barrier();
texture_store(texture, location, color);
}#import bevy_pbr::forward_io::VertexOutput
#ifdef CUBEMAP_ARRAY
@group(1) @binding(0) var base_color_texture: texture_cube_array<f32>;
#else
@group(1) @binding(0) var base_color_texture: texture_cube<f32>;
#endif
@group(1) @binding(1) var base_color_sampler: sampler;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
let fragment_position_view_lh = mesh.world_position.xyz * vec3<f32>(1.0, 1.0, -1.0);
return texture_sample(
base_color_texture,
base_color_sampler,
fragment_position_view_lh
);
}
#import bevy_pbr::forward_io::VertexOutput
struct LineMaterial {
color: vec4<f32>,
};
@group(1) @binding(0) var<uniform> material: LineMaterial;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
return material.color;
}
#import bevy_pbr::mesh_functions get_model_matrix, mesh_position_local_to_clip
#import bevy_pbr::mesh_bindings mesh
struct Vertex {
@location(0) position: vec3<f32>,
@location(1) normal: vec3<f32>,
@location(2) uv: vec2<f32>,
@location(3) i_pos_scale: vec4<f32>,
@location(4) i_color: vec4<f32>,
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) color: vec4<f32>,
};
@vertex
fn vertex(vertex: Vertex) -> VertexOutput {
let position = vertex.position * vertex.i_pos_scale.w + vertex.i_pos_scale.xyz;
var out: VertexOutput;
// NOTE: Passing 0 as the instance_index to get_model_matrix() is a hack
// for this example as the instance_index builtin would map to the wrong
// index in the Mesh array. This index could be passed in via another
// uniform instead but it's unnecessary for the example.
out.clip_position = mesh_position_local_to_clip(
get_model_matrix(0u),
vec4<f32>(position, 1.0)
);
out.color = vertex.i_color;
return out;
}
@fragment
fn fragment(in: VertexOutput) -> @location(0) vec4<f32> {
return in.color;
}
#import bevy_pbr::forward_io::VertexOutput
@group(1) @binding(0) var textures: binding_array<texture_2d<f32>>;
@group(1) @binding(1) var nearest_sampler: sampler;
// We can also have array of samplers
// var samplers: binding_array<sampler>;
@fragment
fn fragment(
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
// Select the texture to sample from using non-uniform uv coordinates
let coords = clamp(vec2<u32>(mesh.uv * 4.0), vec2<u32>(0u), vec2<u32>(3u));
let index = coords.y * 4u + coords.x;
let inner_uv = fract(mesh.uv * 4.0);
return texture_sample(textures[index], nearest_sampler, inner_uv);
}
#import bevy_pbr::mesh_types
#import bevy_pbr::mesh_view_bindings globals
#import bevy_pbr::prepass_utils
#import bevy_pbr::mesh_vertex_output VertexOutput
struct ShowPrepassSettings {
show_depth: u32,
show_normals: u32,
show_motion_vectors: u32,
padding_1: u32,
padding_2: u32,
}
@group(1) @binding(0) var<uniform> settings: ShowPrepassSettings;
@fragment
fn fragment(
#ifdef MULTISAMPLED
@builtin(sample_index) sample_index: u32,
#endif
mesh: VertexOutput,
) -> @location(0) vec4<f32> {
#ifndef MULTISAMPLED
let sample_index = 0u;
#endif
if settings.show_depth == 1u {
let depth = bevy_pbr::prepass_utils::prepass_depth(mesh.position, sample_index);
return vec4(depth, depth, depth, 1.0);
} else if settings.show_normals == 1u {
let normal = bevy_pbr::prepass_utils::prepass_normal(mesh.position, sample_index);
return vec4(normal, 1.0);
} else if settings.show_motion_vectors == 1u {
let motion_vector = bevy_pbr::prepass_utils::prepass_motion_vector(mesh.position, sample_index);
return vec4(motion_vector / globals.delta_time, 0.0, 1.0);
}
return vec4(0.0);
}
// If using this WGSL snippet as an #import, the following should be in scope:
//
// - the `morph_weights` uniform of type `MorphWeights`
// - the `morph_targets` 3d texture
//
// They are defined in `mesh_types.wgsl` and `mesh_bindings.wgsl`.
#define_import_path bevy_pbr::morph
#ifdef MORPH_TARGETS
#import bevy_pbr::mesh_types MorphWeights
#ifdef MESH_BINDGROUP_1
@group(1) @binding(2) var<uniform> morph_weights: MorphWeights;
@group(1) @binding(3) var morph_targets: texture_3d<f32>;
#else
@group(2) @binding(2) var<uniform> morph_weights: MorphWeights;
@group(2) @binding(3) var morph_targets: texture_3d<f32>;
#endif
// NOTE: Those are the "hardcoded" values found in `MorphAttributes` struct
// in crates/bevy_render/src/mesh/morph/visitors.rs
// In an ideal world, the offsets are established dynamically and passed as #defines
// to the shader, but it's out of scope for the initial implementation of morph targets.
const position_offset: u32 = 0u;
const normal_offset: u32 = 3u;
const tangent_offset: u32 = 6u;
const total_component_count: u32 = 9u;
fn layer_count() -> u32 {
let dimensions = texture_dimensions(morph_targets);
return u32(dimensions.z);
}
fn component_texture_coord(vertex_index: u32, component_offset: u32) -> vec2<u32> {
let width = u32(texture_dimensions(morph_targets).x);
let component_index = total_component_count * vertex_index + component_offset;
return vec2<u32>(component_index % width, component_index / width);
}
fn weight_at(weight_index: u32) -> f32 {
let i = weight_index;
return morph_weights.weights[i / 4u][i % 4u];
}
fn morph_pixel(vertex: u32, component: u32, weight: u32) -> f32 {
let coord = component_texture_coord(vertex, component);
// Due to https://gpuweb.github.io/gpuweb/wgsl/#texel-formats
// While the texture stores a f32, the textureLoad returns a vec4<>, where
// only the first component is set.
return texture_load(morph_targets, vec3(coord, weight), 0).r;
}
fn morph(vertex_index: u32, component_offset: u32, weight_index: u32) -> vec3<f32> {
return vec3<f32>(
morph_pixel(vertex_index, component_offset, weight_index),
morph_pixel(vertex_index, component_offset + 1u, weight_index),
morph_pixel(vertex_index, component_offset + 2u, weight_index),
);
}
#endif // MORPH_TARGETS#define_import_path bevy_pbr::mesh_functions
#import bevy_pbr::mesh_view_bindings view
#import bevy_pbr::mesh_bindings mesh
#import bevy_pbr::mesh_types MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT
#import bevy_render::instance_index get_instance_index
#import bevy_render::maths affine_to_square, mat2x4_f32_to_mat3x3_unpack
fn get_model_matrix(instance_index: u32) -> mat4x4<f32> {
return affine_to_square(mesh[get_instance_index(instance_index)].model);
}
fn get_previous_model_matrix(instance_index: u32) -> mat4x4<f32> {
return affine_to_square(mesh[get_instance_index(instance_index)].previous_model);
}
fn mesh_position_local_to_world(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
return model * vertex_position;
}
fn mesh_position_world_to_clip(world_position: vec4<f32>) -> vec4<f32> {
return view.view_proj * world_position;
}
// NOTE: The intermediate world_position assignment is important
// for precision purposes when using the 'equals' depth comparison
// function.
fn mesh_position_local_to_clip(model: mat4x4<f32>, vertex_position: vec4<f32>) -> vec4<f32> {
let world_position = mesh_position_local_to_world(model, vertex_position);
return mesh_position_world_to_clip(world_position);
}
fn mesh_normal_local_to_world(vertex_normal: vec3<f32>, instance_index: u32) -> vec3<f32> {
// NOTE: The mikktspace method of normal mapping requires that the world normal is
// re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents
// and normal maps so that the exact inverse process is applied when shading. Blender, Unity,
// Unreal Engine, Godot, and more all use the mikktspace method. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
return normalize(
mat2x4_f32_to_mat3x3_unpack(
mesh[instance_index].inverse_transpose_model_a,
mesh[instance_index].inverse_transpose_model_b,
) * vertex_normal
);
}
// Calculates the sign of the determinant of the 3x3 model matrix based on a
// mesh flag
fn sign_determinant_model_3x3m(instance_index: u32) -> f32 {
// bool(u32) is false if 0u else true
// f32(bool) is 1.0 if true else 0.0
// * 2.0 - 1.0 remaps 0.0 or 1.0 to -1.0 or 1.0 respectively
return f32(bool(mesh[instance_index].flags & MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT)) * 2.0 - 1.0;
}
fn mesh_tangent_local_to_world(model: mat4x4<f32>, vertex_tangent: vec4<f32>, instance_index: u32) -> vec4<f32> {
// NOTE: The mikktspace method of normal mapping requires that the world tangent is
// re-normalized in the vertex shader to match the way mikktspace bakes vertex tangents
// and normal maps so that the exact inverse process is applied when shading. Blender, Unity,
// Unreal Engine, Godot, and more all use the mikktspace method. Do not change this code
// unless you really know what you are doing.
// http://www.mikktspace.com/
return vec4<f32>(
normalize(
mat3x3<f32>(
model[0].xyz,
model[1].xyz,
model[2].xyz
) * vertex_tangent.xyz
),
// NOTE: Multiplying by the sign of the determinant of the 3x3 model matrix accounts for
// situations such as negative scaling.
vertex_tangent.w * sign_determinant_model_3x3m(instance_index)
);
}
#define_import_path bevy_pbr::mesh_types
struct Mesh {
// Affine 4x3 matrices transposed to 3x4
// Use bevy_render::maths::affine_to_square to unpack
model: mat3x4<f32>,
previous_model: mat3x4<f32>,
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
// Use bevy_pbr::mesh_functions::mat2x4_f32_to_mat3x3_unpack to unpack
inverse_transpose_model_a: mat2x4<f32>,
inverse_transpose_model_b: f32,
// 'flags' is a bit field indicating various options. u32 is 32 bits so we have up to 32 options.
flags: u32,
};
#ifdef SKINNED
struct SkinnedMesh {
data: array<mat4x4<f32>, 256u>,
};
#endif
#ifdef MORPH_TARGETS
struct MorphWeights {
weights: array<vec4<f32>, 16u>, // 16 = 64 / 4 (64 = MAX_MORPH_WEIGHTS)
};
#endif
const MESH_FLAGS_SHADOW_RECEIVER_BIT: u32 = 1u;
// 2^31 - if the flag is set, the sign is positive, else it is negative
const MESH_FLAGS_SIGN_DETERMINANT_MODEL_3X3_BIT: u32 = 2147483648u;
#define_import_path bevy_pbr::skinning
#import bevy_pbr::mesh_types SkinnedMesh
#ifdef SKINNED
#ifdef MESH_BINDGROUP_1
@group(1) @binding(1) var<uniform> joint_matrices: SkinnedMesh;
#else
@group(2) @binding(1) var<uniform> joint_matrices: SkinnedMesh;
#endif
fn skin_model(
indexes: vec4<u32>,
weights: vec4<f32>,
) -> mat4x4<f32> {
return weights.x * joint_matrices.data[indexes.x]
+ weights.y * joint_matrices.data[indexes.y]
+ weights.z * joint_matrices.data[indexes.z]
+ weights.w * joint_matrices.data[indexes.w];
}
fn inverse_transpose_3x3m(in: mat3x3<f32>) -> mat3x3<f32> {
let x = cross(in[1], in[2]);
let y = cross(in[2], in[0]);
let z = cross(in[0], in[1]);
let det = dot(in[2], z);
return mat3x3<f32>(
x / det,
y / det,
z / det
);
}
fn skin_normals(
model: mat4x4<f32>,
normal: vec3<f32>,
) -> vec3<f32> {
return normalize(
inverse_transpose_3x3m(
mat3x3<f32>(
model[0].xyz,
model[1].xyz,
model[2].xyz
)
) * normal
);
}
#endif
#define_import_path bevy_pbr::mesh_view_bindings
#import bevy_pbr::mesh_view_types as types
#import bevy_render::view View
#import bevy_render::globals Globals
@group(0) @binding(0) var<uniform> view: View;
@group(0) @binding(1) var<uniform> lights: types::Lights;
#ifdef NO_ARRAY_TEXTURES_SUPPORT
@group(0) @binding(2) var point_shadow_textures: texture_depth_cube;
#else
@group(0) @binding(2) var point_shadow_textures: texture_depth_cube_array;
#endif
@group(0) @binding(3) var point_shadow_textures_sampler: sampler_comparison;
#ifdef NO_ARRAY_TEXTURES_SUPPORT
@group(0) @binding(4) var directional_shadow_textures: texture_depth_2d;
#else
@group(0) @binding(4) var directional_shadow_textures: texture_depth_2d_array;
#endif
@group(0) @binding(5) var directional_shadow_textures_sampler: sampler_comparison;
#if AVAILABLE_STORAGE_BUFFER_BINDINGS >= 3
@group(0) @binding(6) var<storage> point_lights: types::PointLights;
@group(0) @binding(7) var<storage> cluster_light_index_lists: types::ClusterLightIndexLists;
@group(0) @binding(8) var<storage> cluster_offsets_and_counts: types::ClusterOffsetsAndCounts;
#else
@group(0) @binding(6) var<uniform> point_lights: types::PointLights;
@group(0) @binding(7) var<uniform> cluster_light_index_lists: types::ClusterLightIndexLists;
@group(0) @binding(8) var<uniform> cluster_offsets_and_counts: types::ClusterOffsetsAndCounts;
#endif
@group(0) @binding(9) var<uniform> globals: Globals;
@group(0) @binding(10) var<uniform> fog: types::Fog;
@group(0) @binding(11) var screen_space_ambient_occlusion_texture: texture_2d<f32>;
@group(0) @binding(12) var environment_map_diffuse: texture_cube<f32>;
@group(0) @binding(13) var environment_map_specular: texture_cube<f32>;
@group(0) @binding(14) var environment_map_sampler: sampler;
@group(0) @binding(15) var dt_lut_texture: texture_3d<f32>;
@group(0) @binding(16) var dt_lut_sampler: sampler;
#ifdef MULTISAMPLED
@group(0) @binding(17) var depth_prepass_texture: texture_depth_multisampled_2d;
@group(0) @binding(18) var normal_prepass_texture: texture_multisampled_2d<f32>;
@group(0) @binding(19) var motion_vector_prepass_texture: texture_multisampled_2d<f32>;
#else
@group(0) @binding(17) var depth_prepass_texture: texture_depth_2d;
@group(0) @binding(18) var normal_prepass_texture: texture_2d<f32>;
@group(0) @binding(19) var motion_vector_prepass_texture: texture_2d<f32>;
#endif
#import bevy_pbr::mesh_bindings mesh
#import bevy_pbr::mesh_functions get_model_matrix, mesh_position_local_to_clip
#import bevy_pbr::morph
#ifdef SKINNED
#import bevy_pbr::skinning
#endif
struct Vertex {
@builtin(instance_index) instance_index: u32,
@location(0) position: vec3<f32>,
#ifdef SKINNED
@location(5) joint_indexes: vec4<u32>,
@location(6) joint_weights: vec4<f32>,
#endif
#ifdef MORPH_TARGETS
@builtin(vertex_index) index: u32,
#endif
};
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
};
#ifdef MORPH_TARGETS
fn morph_vertex(vertex_in: Vertex) -> Vertex {
var vertex = vertex_in;
let weight_count = bevy_pbr::morph::layer_count();
for (var i: u32 = 0u; i < weight_count; i ++) {
let weight = bevy_pbr::morph::weight_at(i);
if weight == 0.0 {
continue;
}
vertex.position += weight * bevy_pbr::morph::morph(vertex.index, bevy_pbr::morph::position_offset, i);
}
return vertex;
}
#endif
@vertex
fn vertex(vertex_no_morph: Vertex) -> VertexOutput {
#ifdef MORPH_TARGETS
var vertex = morph_vertex(vertex_no_morph);
#else
var vertex = vertex_no_morph;
#endif
#ifdef SKINNED
let model = bevy_pbr::skinning::skin_model(vertex.joint_indexes, vertex.joint_weights);
#else
let model = get_model_matrix(vertex.instance_index);
#endif
var out: VertexOutput;
out.clip_position = mesh_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
return out;
}
@fragment
fn fragment() -> @location(0) vec4<f32> {
return vec4<f32>(1.0, 1.0, 1.0, 1.0);
}
#define_import_path bevy_pbr::fragment
#import bevy_pbr::pbr_functions as pbr_functions
#import bevy_pbr::pbr_bindings as pbr_bindings
#import bevy_pbr::pbr_types as pbr_types
#import bevy_pbr::prepass_utils
#import bevy_pbr::mesh_vertex_output VertexOutput
#import bevy_pbr::mesh_bindings mesh
#import bevy_pbr::mesh_view_bindings view, fog, screen_space_ambient_occlusion_texture
#import bevy_pbr::mesh_view_types FOG_MODE_OFF
#import bevy_core_pipeline::tonemapping screen_space_dither, powsafe, tone_mapping
#import bevy_pbr::parallax_mapping parallaxed_uv
#import bevy_pbr::prepass_utils
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
#import bevy_pbr::gtao_utils gtao_multibounce
#endif
@fragment
fn fragment(
in: VertexOutput,
@builtin(front_facing) is_front: bool,
) -> @location(0) vec4<f32> {
var output_color: vec4<f32> = pbr_bindings::material.base_color;
let is_orthographic = view.projection[3].w == 1.0;
let V = pbr_functions::calculate_view(in.world_position, is_orthographic);
#ifdef VERTEX_UVS
var uv = in.uv;
#ifdef VERTEX_TANGENTS
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_DEPTH_MAP_BIT) != 0u) {
let N = in.world_normal;
let T = in.world_tangent.xyz;
let B = in.world_tangent.w * cross(N, T);
// Transform V from fragment to camera in world space to tangent space.
let Vt = vec3(dot(V, T), dot(V, B), dot(V, N));
uv = parallaxed_uv(
pbr_bindings::material.parallax_depth_scale,
pbr_bindings::material.max_parallax_layer_count,
pbr_bindings::material.max_relief_mapping_search_steps,
uv,
// Flip the direction of Vt to go toward the surface to make the
// parallax mapping algorithm easier to understand and reason
// about.
-Vt,
);
}
#endif
#endif
#ifdef VERTEX_COLORS
output_color = output_color * in.color;
#endif
#ifdef VERTEX_UVS
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_BASE_COLOR_TEXTURE_BIT) != 0u) {
output_color = output_color * texture_sample_bias(pbr_bindings::base_color_texture, pbr_bindings::base_color_sampler, uv, view.mip_bias);
}
#endif
// NOTE: Unlit bit not set means == 0 is true, so the true case is if lit
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_UNLIT_BIT) == 0u) {
// Prepare a 'processed' StandardMaterial by sampling all textures to resolve
// the material members
var pbr_input: pbr_functions::PbrInput;
pbr_input.material.base_color = output_color;
pbr_input.material.reflectance = pbr_bindings::material.reflectance;
pbr_input.material.flags = pbr_bindings::material.flags;
pbr_input.material.alpha_cutoff = pbr_bindings::material.alpha_cutoff;
// TODO use .a for exposure compensation in HDR
var emissive: vec4<f32> = pbr_bindings::material.emissive;
#ifdef VERTEX_UVS
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_EMISSIVE_TEXTURE_BIT) != 0u) {
emissive = vec4<f32>(emissive.rgb * texture_sample_bias(pbr_bindings::emissive_texture, pbr_bindings::emissive_sampler, uv, view.mip_bias).rgb, 1.0);
}
#endif
pbr_input.material.emissive = emissive;
var metallic: f32 = pbr_bindings::material.metallic;
var perceptual_roughness: f32 = pbr_bindings::material.perceptual_roughness;
#ifdef VERTEX_UVS
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_METALLIC_ROUGHNESS_TEXTURE_BIT) != 0u) {
let metallic_roughness = texture_sample_bias(pbr_bindings::metallic_roughness_texture, pbr_bindings::metallic_roughness_sampler, uv, view.mip_bias);
// Sampling from GLTF standard channels for now
metallic = metallic * metallic_roughness.b;
perceptual_roughness = perceptual_roughness * metallic_roughness.g;
}
#endif
pbr_input.material.metallic = metallic;
pbr_input.material.perceptual_roughness = perceptual_roughness;
// TODO: Split into diffuse/specular occlusion?
var occlusion: vec3<f32> = vec3(1.0);
#ifdef VERTEX_UVS
if ((pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_OCCLUSION_TEXTURE_BIT) != 0u) {
occlusion = vec3(texture_sample_bias(pbr_bindings::occlusion_texture, pbr_bindings::occlusion_sampler, uv, view.mip_bias).r);
}
#endif
#ifdef SCREEN_SPACE_AMBIENT_OCCLUSION
let ssao = texture_load(screen_space_ambient_occlusion_texture, vec2<i32>(in.position.xy), 0i).r;
let ssao_multibounce = gtao_multibounce(ssao, pbr_input.material.base_color.rgb);
occlusion = min(occlusion, ssao_multibounce);
#endif
pbr_input.occlusion = occlusion;
pbr_input.frag_coord = in.position;
pbr_input.world_position = in.world_position;
pbr_input.world_normal = pbr_functions::prepare_world_normal(
in.world_normal,
(pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_DOUBLE_SIDED_BIT) != 0u,
is_front,
);
pbr_input.is_orthographic = is_orthographic;
#ifdef LOAD_PREPASS_NORMALS
pbr_input.N = bevy_pbr::prepass_utils::prepass_normal(in.position, 0u);
#else
pbr_input.N = pbr_functions::apply_normal_mapping(
pbr_bindings::material.flags,
pbr_input.world_normal,
#ifdef VERTEX_TANGENTS
#ifdef STANDARDMATERIAL_NORMAL_MAP
in.world_tangent,
#endif
#endif
#ifdef VERTEX_UVS
uv,
#endif
view.mip_bias,
);
#endif
pbr_input.V = V;
pbr_input.occlusion = occlusion;
pbr_input.flags = mesh[in.instance_index].flags;
output_color = pbr_functions::pbr(pbr_input);
} else {
output_color = pbr_functions::alpha_discard(pbr_bindings::material, output_color);
}
// fog
if (fog.mode != FOG_MODE_OFF && (pbr_bindings::material.flags & pbr_types::STANDARD_MATERIAL_FLAGS_FOG_ENABLED_BIT) != 0u) {
output_color = pbr_functions::apply_fog(fog, output_color, in.world_position.xyz, view.world_position.xyz);
}
#ifdef TONEMAP_IN_SHADER
output_color = tone_mapping(output_color, view.color_grading);
#ifdef DEBAND_DITHER
var output_rgb = output_color.rgb;
output_rgb = powsafe(output_rgb, 1.0 / 2.2);
output_rgb = output_rgb + screen_space_dither(in.position.xy);
// This conversion back to linear space is required because our output texture format is
// SRGB; the GPU will assume our output is linear and will apply an SRGB conversion.
output_rgb = powsafe(output_rgb, 2.2);
output_color = vec4(output_rgb, output_color.a);
#endif
#endif
#ifdef PREMULTIPLY_ALPHA
output_color = pbr_functions::premultiply_alpha(pbr_bindings::material.flags, output_color);
#endif
return output_color;
}
#define_import_path bevy_pbr::pbr_bindings
#import bevy_pbr::pbr_types StandardMaterial
@group(1) @binding(0) var<uniform> material: StandardMaterial;
@group(1) @binding(1) var base_color_texture: texture_2d<f32>;
@group(1) @binding(2) var base_color_sampler: sampler;
@group(1) @binding(3) var emissive_texture: texture_2d<f32>;
@group(1) @binding(4) var emissive_sampler: sampler;
@group(1) @binding(5) var metallic_roughness_texture: texture_2d<f32>;
@group(1) @binding(6) var metallic_roughness_sampler: sampler;
@group(1) @binding(7) var occlusion_texture: texture_2d<f32>;
@group(1) @binding(8) var occlusion_sampler: sampler;
@group(1) @binding(9) var normal_map_texture: texture_2d<f32>;
@group(1) @binding(10) var normal_map_sampler: sampler;
@group(1) @binding(11) var depth_map_texture: texture_2d<f32>;
@group(1) @binding(12) var depth_map_sampler: sampler;
#define_import_path bevy_pbr::mesh_vertex_output
struct VertexOutput {
// this is `clip position` when the struct is used as a vertex stage output
// and `frag coord` when used as a fragment stage input
@builtin(position) position: vec4<f32>,
@location(0) world_position: vec4<f32>,
@location(1) world_normal: vec3<f32>,
#ifdef VERTEX_UVS
@location(2) uv: vec2<f32>,
#endif
#ifdef VERTEX_TANGENTS
@location(3) world_tangent: vec4<f32>,
#endif