-
Notifications
You must be signed in to change notification settings - Fork 55
/
Copy pathindex.html
153 lines (146 loc) · 5.49 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
<!DOCTYPE html>
<html lang="en">
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>BAP3</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
background-color: #f5f5f5;
}
header {
background-color: #333;
color: #fff;
padding: 20px;
text-align: center;
}
.container {
max-width: 800px;
margin: auto;
padding: 20px;
}
h1 {
color: #f37043;
}
p {
line-height: 1.6;
color: #000000;
}
footer {
background-color: #333;
color: #fff;
padding: 10px 0;
text-align: center;
}
img {
max-width: 100%;
height: auto;
margin-right: 20px;
}
.about-section {
display: flex;
align-items: center;
justify-content: center;
flex-wrap: wrap;
margin-left: -55px;
}
.about-section p {
flex: 1;
margin-right: 10px;
margin-left: 45px;
}
.citation {
margin-top: 40px;
}
.citation pre {
background-color: #f9f9f9;
padding: 5px;
border-radius: 10px;
overflow-x: auto;
}
</style>
</head>
<body>
<header>
<h1>Bayesian Analysis with Python</h1>
</header>
<div class="container">
<div class="about-section">
<img src="cover.png" alt="Book Cover" style="max-width: 300px;">
<p>The third edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian
inference and its practical implementation in Python using state-of-the-art libraries like PyMC, ArviZ,
Bambi, PyMC-BART, PreliZ, and Kulprit.
<br>
<br>
By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you
to design and implement Bayesian models for your data science challenges. And you will well-prepared to delve
into more advanced material if the need arises.</p>
</div>
<br>
<br>
<h2>Table of Contents</h2>
<ul>
<li>Chapter 1: Thinking Probabilistically</li>
<li>Chapter 2: Programming Probabilistically</li>
<li>Chapter 3: Hierarchical Models</li>
<li>Chapter 4: Modeling with Lines</li>
<li>Chapter 5: Comparing Models</li>
<li>Chapter 6: Modeling with Bambi</li>
<li>Chapter 7: Mixture Models</li>
<li>Chapter 8: Gaussian Processes</li>
<li>Chapter 9: Bayesian Additive Regression Trees</li>
<li>Chapter 10: Inference Engines</li>
<li>Chapter 11: Where to Go Next</li>
</ul>
<h2>Get the Book</h2>
<p>You can get a copy of the book from:</p>
<ul>
<li><a href="https://packt.link/JrkVW">Amazon.com</a></li>
</ul>
<h2>Code</h2>
<p>All the code used in the book, including code to generate many of the images is available at
<a href="https://github.com/aloctavodia/BAP3">GitHub</a>
</p>
<h2>Solutions to exercises</h2>
<p>Solutions to the exercises can be found at
<a href="https://github.com/aloctavodia/BAP3/tree/main/exercises">GitHub</a>
</p>
<h2>Errors</h2>
<p>If you find an error in the book not listed on the <a href="https://github.com/aloctavodia/BAP3/blob/main/errata.md">errata</a>, or have questions, please fill an <a href="https://github.com/aloctavodia/BAP3/issues">issue</a> in the book's GitHub repository
</p>
<div class="citation">
<h2>Citation</h2>
<p>If you use this book in your own work, please cite it using:
<em>Martin Osvaldo A, Bayesian Analysis with Python. Packt Publishing. 2024. ISBN 978-1-80512-716-1
</em>
<br>
<br>
Here is the citation in BibTeX format</p>
<pre>
@book{martin_bap_2024,
title = {Bayesian {Analysis} with {Python}: {A} {Practical} {Guide} to probabilistic modeling, 3rd {Edition}},
isbn = {978-1-80512-716-1},
shorttitle = {Bayesian {Analysis} with {Python}},
language = {English},
publisher = {Packt Publishing},
author = {Martin, Osvaldo A},
month = feb,
year = {2024},
}
</pre>
</div>
<h2>Donations</h2>
<p>This book is only possible because of open-source contributors.
If you finds this tools useful you can donate to <a href="https://numfocus.org/donate-to-arviz">ArviZ</a>
or <a href="https://numfocus.org/donate-to-pymc">PyMC</a> to help sustain their ongoing development..
</p>
<p>If instead, you want to donate directly to me, the author, please do it at <a href="https://ko-fi.com/aloctavodia">ko-fi</a>
</p>
</div>
<footer>
<p><a href=https://aloctavodia.github.io style="color:#f37043;">More about the author</a></p>
</footer>
</body>
</html>