-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
117 lines (88 loc) · 4.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch.autograd
from costum_dataset import *
from torch.utils.data import DataLoader
from loss import CostumeLoss
from evaluate import *
from config import *
# Experiment name
current_experiment = 'test_05'
# Paths to data, labels
data_path = "/data/VOCdevkit/VOC2012/JPEGImages/"
labels_path = "/data/VOCdevkit/VOC2012/SegmentationObject/"
train_ids_path = "/data/VOCdevkit/VOC2012/ImageSets/Segmentation/train.txt"
val_ids_path = "/data/VOCdevkit/VOC2012/ImageSets/Segmentation/val.txt"
def run():
# Dataloader
train_dataset = CostumeDataset(train_ids_path, data_path, labels_path, img_h=224, img_w=224)
train_dataloader = DataLoader(train_dataset, batch_size, shuffle=True)
val_dataset = CostumeDataset(val_ids_path, data_path, labels_path, img_h=224, img_w=224)
val_dataloader = DataLoader(val_dataset)
# Set up an experiment
experiment, exp_logger = config_experiment(current_experiment, resume=True, context=context)
fe = FeatureExtractor(embedding_dim, context=context)
fe.load_state_dict(experiment['fe_state_dict'])
current_epoch = experiment['epoch']
best_dice = experiment['best_dice']
train_fe_loss_history = experiment['train_fe_loss']
val_fe_loss_history = experiment['val_fe_loss']
dice_history = experiment['dice_history']
fe_loss_fn = CostumeLoss()
fe_opt = torch.optim.Adam(filter(lambda p:p.requires_grad, fe.parameters()), learning_rate)
exp_logger.info('training started/resumed at epoch ' + str(current_epoch))
if torch.cuda.is_available():
print("Using CUDA")
fe.cuda()
for i in range(current_epoch, max_epoch_num):
adjust_learning_rate(fe_opt, i, learning_rate, lr_decay)
running_fe_loss = 0
for batch_num, batch in enumerate(train_dataloader):
inputs = Variable(batch['image'].type(float_type))
labels = batch['label'].cpu().numpy()
features = fe(inputs)
fe_opt.zero_grad()
fe_loss = fe_loss_fn(features, labels)
fe_loss.backward()
fe_opt.step()
np_fe_loss = fe_loss.cpu().data[0]
running_fe_loss += np_fe_loss
exp_logger.info('epoch: ' + str(i) + ', batch number: ' + str(batch_num) +
', loss: ' + "{0:.2f}".format(np_fe_loss))
train_fe_loss = running_fe_loss/(batch_num+1)
# Evaluate model
fe.eval()
val_fe_loss, avg_dice = evaluate_model(fe, val_dataloader, fe_loss_fn)
fe.train()
if best_dice is None or avg_dice > best_dice:
best_dice = avg_dice
isBest = True
else:
isBest = False
exp_logger.info('Saving checkpoint. Average validation loss is: ' + "{0:.2f}".format(val_fe_loss) +
', average DICE distance is: ' + "{0:.2f}".format(avg_dice))
train_fe_loss_history.append(train_fe_loss)
val_fe_loss_history.append(val_fe_loss)
dice_history.append(avg_dice)
# Save experiment
save_experiment({'fe_state_dict': fe.state_dict(),
'epoch': i + 1,
'best_dice': best_dice,
'train_fe_loss': train_fe_loss_history,
'val_fe_loss': val_fe_loss_history,
'dice_history': dice_history}, current_experiment, isBest)
# Plot and save loss history
plt.plot(train_fe_loss_history, 'r')
plt.plot(val_fe_loss_history, 'b')
os.makedirs('visualizations/' + current_experiment, exist_ok=True)
plt.savefig('visualizations/' + current_experiment + '/fe_loss.png')
plt.close()
# Plot and save loss history
plt.plot(dice_history, 'r')
os.makedirs('visualizations/' + current_experiment, exist_ok=True)
plt.savefig('visualizations/' + current_experiment + '/dice.png')
plt.close()
return
def adjust_learning_rate(optimizer, epoch, lr, decay_rate):
for param_group in optimizer.param_groups:
param_group['lr'] = lr*np.power(decay_rate, epoch)
if __name__=='__main__':
run()