From 9403993141c06ff38250e2c1c3881bd74b870b4c Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:24:13 +0530
Subject: [PATCH 1/7] Changed
---
FaceRecognition/README.md | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/FaceRecognition/README.md b/FaceRecognition/README.md
index 612dde3..815ff33 100644
--- a/FaceRecognition/README.md
+++ b/FaceRecognition/README.md
@@ -2,7 +2,7 @@
Modern face recognition with deep learning and HOG algorithm.
-1. Find faces in image (HOG Algorithm)
+1. Find faces in image (HOG Algorithm)
2. Affine Transformations (Face alignment using an ensemble of regression
trees)
3. Encoding Faces (FaceNet)
@@ -42,4 +42,4 @@ Finally, we need a classifier (Linear SVM or other classifier) to find the perso
Thanks to Adam Geitgey who wrote a great [post](https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78) about this, I followed his pipeline.
-
\ No newline at end of file
+
From e74dfa346a0de3fe7af526aeecb9912929423021 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:54:11 +0530
Subject: [PATCH 2/7] Create Readme.txt
---
Bitcoin price prediction/Readme.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 Bitcoin price prediction/Readme.txt
diff --git a/Bitcoin price prediction/Readme.txt b/Bitcoin price prediction/Readme.txt
new file mode 100644
index 0000000..110ed9b
--- /dev/null
+++ b/Bitcoin price prediction/Readme.txt
@@ -0,0 +1 @@
+v
From a9a07aa092bf124bb119121252866b4aa9bf2c33 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:55:24 +0530
Subject: [PATCH 3/7] updated
---
.../Bitcoin price prediction.ipynb | 1436 +++++++++++++++++
Bitcoin price prediction/BitcoinPrice.csv | 366 +++++
2 files changed, 1802 insertions(+)
create mode 100644 Bitcoin price prediction/Bitcoin price prediction.ipynb
create mode 100644 Bitcoin price prediction/BitcoinPrice.csv
diff --git a/Bitcoin price prediction/Bitcoin price prediction.ipynb b/Bitcoin price prediction/Bitcoin price prediction.ipynb
new file mode 100644
index 0000000..c8cbc1a
--- /dev/null
+++ b/Bitcoin price prediction/Bitcoin price prediction.ipynb
@@ -0,0 +1,1436 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Bitcoin price prediction"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#importing libraries\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from matplotlib import pyplot as plt\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#load dataset\n",
+ "df= pd.read_csv('BitcoinPrice.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date | \n",
+ " Price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 2018-08-25 00:00:00 | \n",
+ " 6719.429231 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 2018-08-26 00:00:00 | \n",
+ " 6673.274167 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2018-08-27 00:00:00 | \n",
+ " 6719.266154 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 2018-08-28 00:00:00 | \n",
+ " 7000.040000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 2018-08-29 00:00:00 | \n",
+ " 7054.276429 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date Price\n",
+ "0 2018-08-25 00:00:00 6719.429231\n",
+ "1 2018-08-26 00:00:00 6673.274167\n",
+ "2 2018-08-27 00:00:00 6719.266154\n",
+ "3 2018-08-28 00:00:00 7000.040000\n",
+ "4 2018-08-29 00:00:00 7054.276429"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Date | \n",
+ " Price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 360 | \n",
+ " 2019-08-20 00:00:00 | \n",
+ " 10746.507692 | \n",
+ "
\n",
+ " \n",
+ " 361 | \n",
+ " 2019-08-21 00:00:00 | \n",
+ " 10169.094167 | \n",
+ "
\n",
+ " \n",
+ " 362 | \n",
+ " 2019-08-22 00:00:00 | \n",
+ " 10030.746667 | \n",
+ "
\n",
+ " \n",
+ " 363 | \n",
+ " 2019-08-23 00:00:00 | \n",
+ " 10255.977500 | \n",
+ "
\n",
+ " \n",
+ " 364 | \n",
+ " 2019-08-24 00:00:00 | \n",
+ " 10158.540833 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date Price\n",
+ "360 2019-08-20 00:00:00 10746.507692\n",
+ "361 2019-08-21 00:00:00 10169.094167\n",
+ "362 2019-08-22 00:00:00 10030.746667\n",
+ "363 2019-08-23 00:00:00 10255.977500\n",
+ "364 2019-08-24 00:00:00 10158.540833"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 365 entries, 0 to 364\n",
+ "Data columns (total 2 columns):\n",
+ "Date 365 non-null object\n",
+ "Price 365 non-null float64\n",
+ "dtypes: float64(1), object(1)\n",
+ "memory usage: 5.8+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.drop(['Date'], 1, inplace= True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Price | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 6719.429231 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 6673.274167 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 6719.266154 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7000.040000 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 7054.276429 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Price\n",
+ "0 6719.429231\n",
+ "1 6673.274167\n",
+ "2 6719.266154\n",
+ "3 7000.040000\n",
+ "4 7054.276429"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#predicting 30 days in future\n",
+ "p_days = 30\n",
+ "df['Prediction']=df[['Price']].shift(-p_days)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Price | \n",
+ " Prediction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 6719.429231 | \n",
+ " 6639.304167 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 6673.274167 | \n",
+ " 6412.459167 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 6719.266154 | \n",
+ " 6468.631667 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 7000.040000 | \n",
+ " 6535.476667 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 7054.276429 | \n",
+ " 6677.342500 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Price Prediction\n",
+ "0 6719.429231 6639.304167\n",
+ "1 6673.274167 6412.459167\n",
+ "2 6719.266154 6468.631667\n",
+ "3 7000.040000 6535.476667\n",
+ "4 7054.276429 6677.342500"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Price | \n",
+ " Prediction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 360 | \n",
+ " 10746.507692 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 361 | \n",
+ " 10169.094167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 362 | \n",
+ " 10030.746667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 363 | \n",
+ " 10255.977500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 364 | \n",
+ " 10158.540833 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Price Prediction\n",
+ "360 10746.507692 NaN\n",
+ "361 10169.094167 NaN\n",
+ "362 10030.746667 NaN\n",
+ "363 10255.977500 NaN\n",
+ "364 10158.540833 NaN"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# seperate X and Y\n",
+ "\n",
+ "X= np.array(df.drop(['Prediction'], 1))\n",
+ "X= X[: len(df) - p_days]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(335, 1)"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[ 6719.42923077],\n",
+ " [ 6673.27416667],\n",
+ " [ 6719.26615385],\n",
+ " [ 7000.04 ],\n",
+ " [ 7054.27642857],\n",
+ " [ 6932.6625 ],\n",
+ " [ 6981.94615385],\n",
+ " [ 7100.94666667],\n",
+ " [ 7247.93538462],\n",
+ " [ 7260.94923077],\n",
+ " [ 7326.8525 ],\n",
+ " [ 7113.06923077],\n",
+ " [ 6433.27166667],\n",
+ " [ 6444.80416667],\n",
+ " [ 6366.1075 ],\n",
+ " [ 6286.42583333],\n",
+ " [ 6297.87769231],\n",
+ " [ 6296.32083333],\n",
+ " [ 6273.1375 ],\n",
+ " [ 6450.17923077],\n",
+ " [ 6499.0625 ],\n",
+ " [ 6518.655 ],\n",
+ " [ 6480.64416667],\n",
+ " [ 6400.60083333],\n",
+ " [ 6296.63166667],\n",
+ " [ 6335.82666667],\n",
+ " [ 6418.56266667],\n",
+ " [ 6669.99083333],\n",
+ " [ 6709.3125 ],\n",
+ " [ 6710.445 ],\n",
+ " [ 6639.30416667],\n",
+ " [ 6412.45916667],\n",
+ " [ 6468.63166667],\n",
+ " [ 6535.47666667],\n",
+ " [ 6677.3425 ],\n",
+ " [ 6550.47416667],\n",
+ " [ 6593.135 ],\n",
+ " [ 6590.96833333],\n",
+ " [ 6562.64166667],\n",
+ " [ 6470.4025 ],\n",
+ " [ 6563.62833333],\n",
+ " [ 6568.54916667],\n",
+ " [ 6581.48666667],\n",
+ " [ 6558.5375 ],\n",
+ " [ 6618.56769231],\n",
+ " [ 6621.71166667],\n",
+ " [ 6563.00916667],\n",
+ " [ 6248.63583333],\n",
+ " [ 6260.53083333],\n",
+ " [ 6260.64583333],\n",
+ " [ 6299.39916667],\n",
+ " [ 6452.57166667],\n",
+ " [ 6596.61833333],\n",
+ " [ 6596.27615385],\n",
+ " [ 6568.04076923],\n",
+ " [ 6487.44416667],\n",
+ " [ 6488.82583333],\n",
+ " [ 6531.60166667],\n",
+ " [ 6498.48583333],\n",
+ " [ 6481.426 ],\n",
+ " [ 6508.31 ],\n",
+ " [ 6478.0825 ],\n",
+ " [ 6473.75333333],\n",
+ " [ 6465.9175 ],\n",
+ " [ 6448.22166667],\n",
+ " [ 6382.66833333],\n",
+ " [ 6309.45285714],\n",
+ " [ 6310.28416667],\n",
+ " [ 6342.28083333],\n",
+ " [ 6387.67416667],\n",
+ " [ 6363.79583333],\n",
+ " [ 6391.87333333],\n",
+ " [ 6436.965 ],\n",
+ " [ 6445.35416667],\n",
+ " [ 6538.79 ],\n",
+ " [ 6486.25166667],\n",
+ " [ 6411.28083333],\n",
+ " [ 6399.03333333],\n",
+ " [ 6378.26833333],\n",
+ " [ 6401.93666667],\n",
+ " [ 6372.06333333],\n",
+ " [ 6176.155 ],\n",
+ " [ 5615.18 ],\n",
+ " [ 5596.1925 ],\n",
+ " [ 5558.24333333],\n",
+ " [ 5606.04416667],\n",
+ " [ 5303.9425 ],\n",
+ " [ 4671.97 ],\n",
+ " [ 4533.68083333],\n",
+ " [ 4548.7975 ],\n",
+ " [ 4309.3375 ],\n",
+ " [ 4293.84083333],\n",
+ " [ 3823.51166667],\n",
+ " [ 3920.53666667],\n",
+ " [ 3751.66833333],\n",
+ " [ 4103.45384615],\n",
+ " [ 4263.78333333],\n",
+ " [ 4106.87166667],\n",
+ " [ 4116.7775 ],\n",
+ " [ 4167.54666667],\n",
+ " [ 3967.52416667],\n",
+ " [ 3961.49333333],\n",
+ " [ 3858.34916667],\n",
+ " [ 3742.94333333],\n",
+ " [ 3405.64333333],\n",
+ " [ 3435.34 ],\n",
+ " [ 3528.80333333],\n",
+ " [ 3523.96 ],\n",
+ " [ 3426.19 ],\n",
+ " [ 3462.04 ],\n",
+ " [ 3406.7625 ],\n",
+ " [ 3278.37416667],\n",
+ " [ 3225.29916667],\n",
+ " [ 3271.23833333],\n",
+ " [ 3392.405 ],\n",
+ " [ 3567.47 ],\n",
+ " [ 3808.0425 ],\n",
+ " [ 3982.85083333],\n",
+ " [ 4015.60916667],\n",
+ " [ 3910.97333333],\n",
+ " [ 4027.47833333],\n",
+ " [ 4178.59083333],\n",
+ " [ 3813.88 ],\n",
+ " [ 3825.37916667],\n",
+ " [ 3747.83916667],\n",
+ " [ 3743.905 ],\n",
+ " [ 3912.28583333],\n",
+ " [ 3832.92166667],\n",
+ " [ 3791.54583333],\n",
+ " [ 3752.27166667],\n",
+ " [ 3867.13833333],\n",
+ " [ 3865.7975 ],\n",
+ " [ 3822.62666667],\n",
+ " [ 3868.4875 ],\n",
+ " [ 3920.45666667],\n",
+ " [ 4036.09333333],\n",
+ " [ 4035.855 ],\n",
+ " [ 4034.13833333],\n",
+ " [ 3812.58583333],\n",
+ " [ 3656.73583333],\n",
+ " [ 3646.34583333],\n",
+ " [ 3599.84166667],\n",
+ " [ 3604.1175 ],\n",
+ " [ 3656.785 ],\n",
+ " [ 3621.27083333],\n",
+ " [ 3619.96416667],\n",
+ " [ 3632.395 ],\n",
+ " [ 3690.52333333],\n",
+ " [ 3620.1275 ],\n",
+ " [ 3548.4275 ],\n",
+ " [ 3558.92416667],\n",
+ " [ 3579.89666667],\n",
+ " [ 3567.29916667],\n",
+ " [ 3572.735 ],\n",
+ " [ 3589.26083333],\n",
+ " [ 3567.76333333],\n",
+ " [ 3458.06666667],\n",
+ " [ 3417.1675 ],\n",
+ " [ 3452.22333333],\n",
+ " [ 3454.00882353],\n",
+ " [ 3454.19461538],\n",
+ " [ 3470.07916667],\n",
+ " [ 3468.305 ],\n",
+ " [ 3452.32833333],\n",
+ " [ 3458.70333333],\n",
+ " [ 3406.82083333],\n",
+ " [ 3403.96416667],\n",
+ " [ 3498.86833333],\n",
+ " [ 3652.21166667],\n",
+ " [ 3645.27666667],\n",
+ " [ 3634.77 ],\n",
+ " [ 3624.15583333],\n",
+ " [ 3623.07166667],\n",
+ " [ 3609.86916667],\n",
+ " [ 3610.74833333],\n",
+ " [ 3630.39666667],\n",
+ " [ 3631.55333333],\n",
+ " [ 3810.78153846],\n",
+ " [ 3933.14333333],\n",
+ " [ 3951.565 ],\n",
+ " [ 3948.41166667],\n",
+ " [ 3968.65666667],\n",
+ " [ 4018.04416667],\n",
+ " [ 4020.12583333],\n",
+ " [ 3829.56833333],\n",
+ " [ 3833.31083333],\n",
+ " [ 3832.61307692],\n",
+ " [ 3843.58333333],\n",
+ " [ 3842.13916667],\n",
+ " [ 3827.4875 ],\n",
+ " [ 3827.69083333],\n",
+ " [ 3749.56833333],\n",
+ " [ 3793.26083333],\n",
+ " [ 3863.33333333],\n",
+ " [ 3888.70166667],\n",
+ " [ 3905.05833333],\n",
+ " [ 3919.56583333],\n",
+ " [ 3922.615 ],\n",
+ " [ 3896.71833333],\n",
+ " [ 3880.7675 ],\n",
+ " [ 3881.37923077],\n",
+ " [ 3883.98928571],\n",
+ " [ 3918.08666667],\n",
+ " [ 4011.0925 ],\n",
+ " [ 3994.34833333],\n",
+ " [ 3998.4975 ],\n",
+ " [ 4008.65833333],\n",
+ " [ 4025.02583333],\n",
+ " [ 4026.63583333],\n",
+ " [ 4000.335 ],\n",
+ " [ 4006.11583333],\n",
+ " [ 3995.32333333],\n",
+ " [ 3977.45416667],\n",
+ " [ 3933.95416667],\n",
+ " [ 4011.36583333],\n",
+ " [ 4034.05666667],\n",
+ " [ 4075.52642857],\n",
+ " [ 4107.34083333],\n",
+ " [ 4109.31666667],\n",
+ " [ 4145.10846154],\n",
+ " [ 4675.1125 ],\n",
+ " [ 5018.49833333],\n",
+ " [ 4970.84916667],\n",
+ " [ 4980.89833333],\n",
+ " [ 5042.51769231],\n",
+ " [ 5126.83416667],\n",
+ " [ 5214.27666667],\n",
+ " [ 5197.75076923],\n",
+ " [ 5251.19 ],\n",
+ " [ 5111.77076923],\n",
+ " [ 5031.475 ],\n",
+ " [ 5076.3 ],\n",
+ " [ 5077.805 ],\n",
+ " [ 5114.85416667],\n",
+ " [ 5109.94666667],\n",
+ " [ 5214.57416667],\n",
+ " [ 5263.3975 ],\n",
+ " [ 5255.61416667],\n",
+ " [ 5302.9575 ],\n",
+ " [ 5274.14583333],\n",
+ " [ 5305.275 ],\n",
+ " [ 5527.80166667],\n",
+ " [ 5465.515 ],\n",
+ " [ 5421.52666667],\n",
+ " [ 5280.61666667],\n",
+ " [ 5281.80916667],\n",
+ " [ 5306.695 ],\n",
+ " [ 5277.88333333],\n",
+ " [ 5262.36333333],\n",
+ " [ 5310.17333333],\n",
+ " [ 5364.99166667],\n",
+ " [ 5633.7475 ],\n",
+ " [ 5697.92333333],\n",
+ " [ 5718.22916667],\n",
+ " [ 5654.35333333],\n",
+ " [ 5863.52333333],\n",
+ " [ 5851.67076923],\n",
+ " [ 6056.4175 ],\n",
+ " [ 6302.6125 ],\n",
+ " [ 6833.35083333],\n",
+ " [ 7152.48416667],\n",
+ " [ 7447.11416667],\n",
+ " [ 8005.25083333],\n",
+ " [ 8063.89583333],\n",
+ " [ 7979.575 ],\n",
+ " [ 7265.96333333],\n",
+ " [ 7338.52083333],\n",
+ " [ 7894.92666667],\n",
+ " [ 7926.705 ],\n",
+ " [ 7954.80833333],\n",
+ " [ 7896.51083333],\n",
+ " [ 7688.52583333],\n",
+ " [ 7972.71916667],\n",
+ " [ 8046.10769231],\n",
+ " [ 8114.9325 ],\n",
+ " [ 8779.97083333],\n",
+ " [ 8727.90083333],\n",
+ " [ 8646.195 ],\n",
+ " [ 8641.89166667],\n",
+ " [ 8342.77 ],\n",
+ " [ 8543.03 ],\n",
+ " [ 8663.6425 ],\n",
+ " [ 8546.17166667],\n",
+ " [ 7848.41583333],\n",
+ " [ 7765.68833333],\n",
+ " [ 7756.9575 ],\n",
+ " [ 7920.945 ],\n",
+ " [ 7941.22166667],\n",
+ " [ 7817.76833333],\n",
+ " [ 7815.13583333],\n",
+ " [ 7914.53916667],\n",
+ " [ 8033.30666667],\n",
+ " [ 8163.66333333],\n",
+ " [ 8342.24076923],\n",
+ " [ 8721.645 ],\n",
+ " [ 9096.28583333],\n",
+ " [ 9227.125 ],\n",
+ " [ 9160.0675 ],\n",
+ " [ 9147.005 ],\n",
+ " [ 9346.0725 ],\n",
+ " [ 9791.0175 ],\n",
+ " [10730.39166667],\n",
+ " [10748.01166667],\n",
+ " [10851.84833333],\n",
+ " [11314.76153846],\n",
+ " [12686.38833333],\n",
+ " [11834.12416667],\n",
+ " [11665.57583333],\n",
+ " [11886.88615385],\n",
+ " [11545.63333333],\n",
+ " [10690.83333333],\n",
+ " [10300.4875 ],\n",
+ " [11342.3175 ],\n",
+ " [11779.45083333],\n",
+ " [11118.8875 ],\n",
+ " [11411.61666667],\n",
+ " [11310.50666667],\n",
+ " [11788.06916667],\n",
+ " [12567.70384615],\n",
+ " [12668.62916667],\n",
+ " [11560.6025 ],\n",
+ " [11577.69538462],\n",
+ " [11412.12416667],\n",
+ " [10852.92666667],\n",
+ " [10438.55416667],\n",
+ " [10300.41166667],\n",
+ " [ 9584.47583333],\n",
+ " [10092.75166667],\n",
+ " [10455.73 ],\n",
+ " [10685.415 ],\n",
+ " [10569.305 ],\n",
+ " [10449.62666667],\n",
+ " [10044.11333333],\n",
+ " [ 9708.43583333],\n",
+ " [10021.325 ]])"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "X"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# creating Y as np array\n",
+ "Y = np.array(df['Prediction'])\n",
+ "Y= Y[: -p_days]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(335,)"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y.shape"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 6639.30416667, 6412.45916667, 6468.63166667, 6535.47666667,\n",
+ " 6677.3425 , 6550.47416667, 6593.135 , 6590.96833333,\n",
+ " 6562.64166667, 6470.4025 , 6563.62833333, 6568.54916667,\n",
+ " 6581.48666667, 6558.5375 , 6618.56769231, 6621.71166667,\n",
+ " 6563.00916667, 6248.63583333, 6260.53083333, 6260.64583333,\n",
+ " 6299.39916667, 6452.57166667, 6596.61833333, 6596.27615385,\n",
+ " 6568.04076923, 6487.44416667, 6488.82583333, 6531.60166667,\n",
+ " 6498.48583333, 6481.426 , 6508.31 , 6478.0825 ,\n",
+ " 6473.75333333, 6465.9175 , 6448.22166667, 6382.66833333,\n",
+ " 6309.45285714, 6310.28416667, 6342.28083333, 6387.67416667,\n",
+ " 6363.79583333, 6391.87333333, 6436.965 , 6445.35416667,\n",
+ " 6538.79 , 6486.25166667, 6411.28083333, 6399.03333333,\n",
+ " 6378.26833333, 6401.93666667, 6372.06333333, 6176.155 ,\n",
+ " 5615.18 , 5596.1925 , 5558.24333333, 5606.04416667,\n",
+ " 5303.9425 , 4671.97 , 4533.68083333, 4548.7975 ,\n",
+ " 4309.3375 , 4293.84083333, 3823.51166667, 3920.53666667,\n",
+ " 3751.66833333, 4103.45384615, 4263.78333333, 4106.87166667,\n",
+ " 4116.7775 , 4167.54666667, 3967.52416667, 3961.49333333,\n",
+ " 3858.34916667, 3742.94333333, 3405.64333333, 3435.34 ,\n",
+ " 3528.80333333, 3523.96 , 3426.19 , 3462.04 ,\n",
+ " 3406.7625 , 3278.37416667, 3225.29916667, 3271.23833333,\n",
+ " 3392.405 , 3567.47 , 3808.0425 , 3982.85083333,\n",
+ " 4015.60916667, 3910.97333333, 4027.47833333, 4178.59083333,\n",
+ " 3813.88 , 3825.37916667, 3747.83916667, 3743.905 ,\n",
+ " 3912.28583333, 3832.92166667, 3791.54583333, 3752.27166667,\n",
+ " 3867.13833333, 3865.7975 , 3822.62666667, 3868.4875 ,\n",
+ " 3920.45666667, 4036.09333333, 4035.855 , 4034.13833333,\n",
+ " 3812.58583333, 3656.73583333, 3646.34583333, 3599.84166667,\n",
+ " 3604.1175 , 3656.785 , 3621.27083333, 3619.96416667,\n",
+ " 3632.395 , 3690.52333333, 3620.1275 , 3548.4275 ,\n",
+ " 3558.92416667, 3579.89666667, 3567.29916667, 3572.735 ,\n",
+ " 3589.26083333, 3567.76333333, 3458.06666667, 3417.1675 ,\n",
+ " 3452.22333333, 3454.00882353, 3454.19461538, 3470.07916667,\n",
+ " 3468.305 , 3452.32833333, 3458.70333333, 3406.82083333,\n",
+ " 3403.96416667, 3498.86833333, 3652.21166667, 3645.27666667,\n",
+ " 3634.77 , 3624.15583333, 3623.07166667, 3609.86916667,\n",
+ " 3610.74833333, 3630.39666667, 3631.55333333, 3810.78153846,\n",
+ " 3933.14333333, 3951.565 , 3948.41166667, 3968.65666667,\n",
+ " 4018.04416667, 4020.12583333, 3829.56833333, 3833.31083333,\n",
+ " 3832.61307692, 3843.58333333, 3842.13916667, 3827.4875 ,\n",
+ " 3827.69083333, 3749.56833333, 3793.26083333, 3863.33333333,\n",
+ " 3888.70166667, 3905.05833333, 3919.56583333, 3922.615 ,\n",
+ " 3896.71833333, 3880.7675 , 3881.37923077, 3883.98928571,\n",
+ " 3918.08666667, 4011.0925 , 3994.34833333, 3998.4975 ,\n",
+ " 4008.65833333, 4025.02583333, 4026.63583333, 4000.335 ,\n",
+ " 4006.11583333, 3995.32333333, 3977.45416667, 3933.95416667,\n",
+ " 4011.36583333, 4034.05666667, 4075.52642857, 4107.34083333,\n",
+ " 4109.31666667, 4145.10846154, 4675.1125 , 5018.49833333,\n",
+ " 4970.84916667, 4980.89833333, 5042.51769231, 5126.83416667,\n",
+ " 5214.27666667, 5197.75076923, 5251.19 , 5111.77076923,\n",
+ " 5031.475 , 5076.3 , 5077.805 , 5114.85416667,\n",
+ " 5109.94666667, 5214.57416667, 5263.3975 , 5255.61416667,\n",
+ " 5302.9575 , 5274.14583333, 5305.275 , 5527.80166667,\n",
+ " 5465.515 , 5421.52666667, 5280.61666667, 5281.80916667,\n",
+ " 5306.695 , 5277.88333333, 5262.36333333, 5310.17333333,\n",
+ " 5364.99166667, 5633.7475 , 5697.92333333, 5718.22916667,\n",
+ " 5654.35333333, 5863.52333333, 5851.67076923, 6056.4175 ,\n",
+ " 6302.6125 , 6833.35083333, 7152.48416667, 7447.11416667,\n",
+ " 8005.25083333, 8063.89583333, 7979.575 , 7265.96333333,\n",
+ " 7338.52083333, 7894.92666667, 7926.705 , 7954.80833333,\n",
+ " 7896.51083333, 7688.52583333, 7972.71916667, 8046.10769231,\n",
+ " 8114.9325 , 8779.97083333, 8727.90083333, 8646.195 ,\n",
+ " 8641.89166667, 8342.77 , 8543.03 , 8663.6425 ,\n",
+ " 8546.17166667, 7848.41583333, 7765.68833333, 7756.9575 ,\n",
+ " 7920.945 , 7941.22166667, 7817.76833333, 7815.13583333,\n",
+ " 7914.53916667, 8033.30666667, 8163.66333333, 8342.24076923,\n",
+ " 8721.645 , 9096.28583333, 9227.125 , 9160.0675 ,\n",
+ " 9147.005 , 9346.0725 , 9791.0175 , 10730.39166667,\n",
+ " 10748.01166667, 10851.84833333, 11314.76153846, 12686.38833333,\n",
+ " 11834.12416667, 11665.57583333, 11886.88615385, 11545.63333333,\n",
+ " 10690.83333333, 10300.4875 , 11342.3175 , 11779.45083333,\n",
+ " 11118.8875 , 11411.61666667, 11310.50666667, 11788.06916667,\n",
+ " 12567.70384615, 12668.62916667, 11560.6025 , 11577.69538462,\n",
+ " 11412.12416667, 10852.92666667, 10438.55416667, 10300.41166667,\n",
+ " 9584.47583333, 10092.75166667, 10455.73 , 10685.415 ,\n",
+ " 10569.305 , 10449.62666667, 10044.11333333, 9708.43583333,\n",
+ " 10021.325 , 9774.2575 , 9725.4025 , 9500.32416667,\n",
+ " 9533.97933333, 9539.7125 , 9873.81166667, 10088.8 ,\n",
+ " 10478.90166667, 10790.63 , 10826.275 , 11713.16166667,\n",
+ " 11759.01916667, 11703.73833333, 11803.88833333, 11816.9125 ,\n",
+ " 11586.1725 , 11377.80416667, 11397.80166667, 11144.38916667,\n",
+ " 10450.81333333, 9988.9475 , 10230.73333333, 10292.38333333,\n",
+ " 10295.1175 , 10605.82583333, 10746.50769231, 10169.09416667,\n",
+ " 10030.74666667, 10255.9775 , 10158.54083333])"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "Y"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# split the data\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "P_days_array = np.array(df.drop(['Prediction'], 1))[-p_days: ]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 9774.2575 ]\n",
+ " [ 9725.4025 ]\n",
+ " [ 9500.32416667]\n",
+ " [ 9533.97933333]\n",
+ " [ 9539.7125 ]\n",
+ " [ 9873.81166667]\n",
+ " [10088.8 ]\n",
+ " [10478.90166667]\n",
+ " [10790.63 ]\n",
+ " [10826.275 ]\n",
+ " [11713.16166667]\n",
+ " [11759.01916667]\n",
+ " [11703.73833333]\n",
+ " [11803.88833333]\n",
+ " [11816.9125 ]\n",
+ " [11586.1725 ]\n",
+ " [11377.80416667]\n",
+ " [11397.80166667]\n",
+ " [11144.38916667]\n",
+ " [10450.81333333]\n",
+ " [ 9988.9475 ]\n",
+ " [10230.73333333]\n",
+ " [10292.38333333]\n",
+ " [10295.1175 ]\n",
+ " [10605.82583333]\n",
+ " [10746.50769231]\n",
+ " [10169.09416667]\n",
+ " [10030.74666667]\n",
+ " [10255.9775 ]\n",
+ " [10158.54083333]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(P_days_array)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.ensemble import RandomForestRegressor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Random Forset Accuracy: 81.70%\n"
+ ]
+ }
+ ],
+ "source": [
+ "Rf= RandomForestRegressor(n_estimators = 1000, random_state = 1)\n",
+ "Rf.fit(X_train, y_train)\n",
+ "print('Random Forset Accuracy: {:.2f}%'.format(Rf.score(X_test, y_test)*100))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[10592.95281917 4139.74340925 4009.33721686 3750.94329917\n",
+ " 6686.03089333 8017.41007 4603.41209301 10917.573125\n",
+ " 10320.73992308 6382.47382974 7509.0243875 3744.34914776\n",
+ " 3687.6209075 5056.54525667 3747.92045345 4191.83126167\n",
+ " 10529.23178744 8470.04180417 6905.674225 5218.05125333\n",
+ " 4358.91695417 3638.28610218 5702.43225545 4455.19234582\n",
+ " 4202.18310936 10617.9656925 4066.20269833 7115.10845\n",
+ " 11412.84343769 4002.42426333 4206.6927183 3860.87866036\n",
+ " 7509.0243875 5303.99897417 11263.2550775 3748.50336583\n",
+ " 3997.12380519 5209.35112333 10126.78781538 3836.76394551\n",
+ " 4068.1524791 6825.921215 7128.49054583 10941.40453333\n",
+ " 7013.71267083 3688.69679871 10479.43125917 6332.03818083\n",
+ " 3831.54122147 10602.2699325 3831.54122147 10393.4880575\n",
+ " 4207.97078996 3761.95641686 3650.5778725 6727.83350083\n",
+ " 6508.72924583 4980.35495596 5941.3529375 10165.75482904\n",
+ " 3797.3707425 5724.37518583 3638.90940527 10590.86682936\n",
+ " 3672.98316681 4589.31359917 3816.34710583]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Prediction\n",
+ "Rf_predict = Rf.predict(X_test)\n",
+ "print(Rf_predict)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[10478.90166667 4109.31666667 8663.6425 3833.31083333\n",
+ " 6550.47416667 3808.0425 7688.52583333 9539.7125\n",
+ " 10044.11333333 6399.03333333 7447.11416667 5214.27666667\n",
+ " 3403.96416667 3832.92166667 3624.15583333 5306.695\n",
+ " 10851.84833333 7954.80833333 6568.54916667 5305.275\n",
+ " 6260.64583333 4025.02583333 4116.7775 4011.36583333\n",
+ " 3961.49333333 11560.6025 3933.95416667 6056.4175\n",
+ " 11665.57583333 4034.13833333 3417.1675 3630.39666667\n",
+ " 8005.25083333 5214.57416667 11397.80166667 4020.12583333\n",
+ " 4167.54666667 3558.92416667 10088.8 3827.4875\n",
+ " 4006.11583333 7765.68833333 5851.67076923 11586.1725\n",
+ " 8063.89583333 3589.26083333 9584.47583333 6411.28083333\n",
+ " 3609.86916667 10092.75166667 3645.27666667 10685.415\n",
+ " 4034.05666667 3225.29916667 3604.1175 5654.35333333\n",
+ " 6412.45916667 5111.77076923 5697.92333333 9160.0675\n",
+ " 3968.65666667 4548.7975 3567.29916667 11412.12416667\n",
+ " 5018.49833333 6299.39916667 5310.17333333]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(y_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[10592.95281917 4139.74340925 4009.33721686 3750.94329917\n",
+ " 6686.03089333 8017.41007 4603.41209301 10917.573125\n",
+ " 10320.73992308 6382.47382974 7509.0243875 3744.34914776\n",
+ " 3687.6209075 5056.54525667 3747.92045345 4191.83126167\n",
+ " 10529.23178744 8470.04180417 6905.674225 5218.05125333\n",
+ " 4358.91695417 3638.28610218 5702.43225545 4455.19234582\n",
+ " 4202.18310936 10617.9656925 4066.20269833 7115.10845\n",
+ " 11412.84343769 4002.42426333 4206.6927183 3860.87866036\n",
+ " 7509.0243875 5303.99897417 11263.2550775 3748.50336583\n",
+ " 3997.12380519 5209.35112333 10126.78781538 3836.76394551\n",
+ " 4068.1524791 6825.921215 7128.49054583 10941.40453333\n",
+ " 7013.71267083 3688.69679871 10479.43125917 6332.03818083\n",
+ " 3831.54122147 10602.2699325 3831.54122147 10393.4880575\n",
+ " 4207.97078996 3761.95641686 3650.5778725 6727.83350083\n",
+ " 6508.72924583 4980.35495596 5941.3529375 10165.75482904\n",
+ " 3797.3707425 5724.37518583 3638.90940527 10590.86682936\n",
+ " 3672.98316681 4589.31359917 3816.34710583]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# MOdel prediction for 30days\n",
+ "Rf_predict_30= Rf.predict(P_days_array)\n",
+ "print(Rf_predict)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Price | \n",
+ " Prediction | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 335 | \n",
+ " 9774.257500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 336 | \n",
+ " 9725.402500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 337 | \n",
+ " 9500.324167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 338 | \n",
+ " 9533.979333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 339 | \n",
+ " 9539.712500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 340 | \n",
+ " 9873.811667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 341 | \n",
+ " 10088.800000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 342 | \n",
+ " 10478.901667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 343 | \n",
+ " 10790.630000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 344 | \n",
+ " 10826.275000 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 345 | \n",
+ " 11713.161667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 346 | \n",
+ " 11759.019167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 347 | \n",
+ " 11703.738333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 348 | \n",
+ " 11803.888333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 349 | \n",
+ " 11816.912500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 350 | \n",
+ " 11586.172500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 351 | \n",
+ " 11377.804167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 352 | \n",
+ " 11397.801667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 353 | \n",
+ " 11144.389167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 354 | \n",
+ " 10450.813333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 355 | \n",
+ " 9988.947500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 356 | \n",
+ " 10230.733333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 357 | \n",
+ " 10292.383333 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 358 | \n",
+ " 10295.117500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 359 | \n",
+ " 10605.825833 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 360 | \n",
+ " 10746.507692 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 361 | \n",
+ " 10169.094167 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 362 | \n",
+ " 10030.746667 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 363 | \n",
+ " 10255.977500 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 364 | \n",
+ " 10158.540833 | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Price Prediction\n",
+ "335 9774.257500 NaN\n",
+ "336 9725.402500 NaN\n",
+ "337 9500.324167 NaN\n",
+ "338 9533.979333 NaN\n",
+ "339 9539.712500 NaN\n",
+ "340 9873.811667 NaN\n",
+ "341 10088.800000 NaN\n",
+ "342 10478.901667 NaN\n",
+ "343 10790.630000 NaN\n",
+ "344 10826.275000 NaN\n",
+ "345 11713.161667 NaN\n",
+ "346 11759.019167 NaN\n",
+ "347 11703.738333 NaN\n",
+ "348 11803.888333 NaN\n",
+ "349 11816.912500 NaN\n",
+ "350 11586.172500 NaN\n",
+ "351 11377.804167 NaN\n",
+ "352 11397.801667 NaN\n",
+ "353 11144.389167 NaN\n",
+ "354 10450.813333 NaN\n",
+ "355 9988.947500 NaN\n",
+ "356 10230.733333 NaN\n",
+ "357 10292.383333 NaN\n",
+ "358 10295.117500 NaN\n",
+ "359 10605.825833 NaN\n",
+ "360 10746.507692 NaN\n",
+ "361 10169.094167 NaN\n",
+ "362 10030.746667 NaN\n",
+ "363 10255.977500 NaN\n",
+ "364 10158.540833 NaN"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#orignal values\n",
+ "df.tail(30)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Bitcoin price prediction/BitcoinPrice.csv b/Bitcoin price prediction/BitcoinPrice.csv
new file mode 100644
index 0000000..0600ca4
--- /dev/null
+++ b/Bitcoin price prediction/BitcoinPrice.csv
@@ -0,0 +1,366 @@
+Date,Price
+2018-08-25 00:00:00,6719.429230769231
+2018-08-26 00:00:00,6673.274166666666
+2018-08-27 00:00:00,6719.266153846153
+2018-08-28 00:00:00,7000.040000000002
+2018-08-29 00:00:00,7054.276428571429
+2018-08-30 00:00:00,6932.662499999999
+2018-08-31 00:00:00,6981.9461538461555
+2018-09-01 00:00:00,7100.946666666667
+2018-09-02 00:00:00,7247.9353846153845
+2018-09-03 00:00:00,7260.949230769231
+2018-09-04 00:00:00,7326.8525
+2018-09-05 00:00:00,7113.069230769231
+2018-09-06 00:00:00,6433.2716666666665
+2018-09-07 00:00:00,6444.804166666668
+2018-09-08 00:00:00,6366.107500000001
+2018-09-09 00:00:00,6286.425833333334
+2018-09-10 00:00:00,6297.877692307693
+2018-09-11 00:00:00,6296.320833333334
+2018-09-12 00:00:00,6273.1375
+2018-09-13 00:00:00,6450.179230769231
+2018-09-14 00:00:00,6499.0625
+2018-09-15 00:00:00,6518.655000000002
+2018-09-16 00:00:00,6480.644166666668
+2018-09-17 00:00:00,6400.600833333334
+2018-09-18 00:00:00,6296.631666666667
+2018-09-19 00:00:00,6335.826666666665
+2018-09-20 00:00:00,6418.562666666668
+2018-09-21 00:00:00,6669.990833333333
+2018-09-22 00:00:00,6709.312500000001
+2018-09-23 00:00:00,6710.445000000001
+2018-09-24 00:00:00,6639.304166666666
+2018-09-25 00:00:00,6412.459166666667
+2018-09-26 00:00:00,6468.631666666668
+2018-09-27 00:00:00,6535.4766666666665
+2018-09-28 00:00:00,6677.342500000002
+2018-09-29 00:00:00,6550.474166666667
+2018-09-30 00:00:00,6593.135000000001
+2018-10-01 00:00:00,6590.968333333334
+2018-10-02 00:00:00,6562.641666666666
+2018-10-03 00:00:00,6470.402500000001
+2018-10-04 00:00:00,6563.628333333333
+2018-10-05 00:00:00,6568.549166666667
+2018-10-06 00:00:00,6581.486666666667
+2018-10-07 00:00:00,6558.537499999999
+2018-10-08 00:00:00,6618.567692307693
+2018-10-09 00:00:00,6621.711666666667
+2018-10-10 00:00:00,6563.009166666667
+2018-10-11 00:00:00,6248.635833333334
+2018-10-12 00:00:00,6260.530833333333
+2018-10-13 00:00:00,6260.645833333335
+2018-10-14 00:00:00,6299.399166666666
+2018-10-15 00:00:00,6452.571666666667
+2018-10-16 00:00:00,6596.618333333333
+2018-10-17 00:00:00,6596.276153846155
+2018-10-18 00:00:00,6568.040769230769
+2018-10-19 00:00:00,6487.444166666667
+2018-10-20 00:00:00,6488.825833333333
+2018-10-21 00:00:00,6531.6016666666665
+2018-10-22 00:00:00,6498.485833333333
+2018-10-23 00:00:00,6481.425999999999
+2018-10-24 00:00:00,6508.31
+2018-10-25 00:00:00,6478.0825
+2018-10-26 00:00:00,6473.753333333334
+2018-10-27 00:00:00,6465.9175000000005
+2018-10-28 00:00:00,6448.221666666667
+2018-10-29 00:00:00,6382.668333333332
+2018-10-30 00:00:00,6309.4528571428555
+2018-10-31 00:00:00,6310.284166666667
+2018-11-01 00:00:00,6342.280833333334
+2018-11-02 00:00:00,6387.674166666667
+2018-11-03 00:00:00,6363.795833333334
+2018-11-04 00:00:00,6391.873333333333
+2018-11-05 00:00:00,6436.965
+2018-11-06 00:00:00,6445.354166666667
+2018-11-07 00:00:00,6538.79
+2018-11-08 00:00:00,6486.251666666667
+2018-11-09 00:00:00,6411.280833333333
+2018-11-10 00:00:00,6399.033333333333
+2018-11-11 00:00:00,6378.268333333333
+2018-11-12 00:00:00,6401.936666666667
+2018-11-13 00:00:00,6372.063333333333
+2018-11-14 00:00:00,6176.155
+2018-11-15 00:00:00,5615.179999999999
+2018-11-16 00:00:00,5596.1925
+2018-11-17 00:00:00,5558.243333333333
+2018-11-18 00:00:00,5606.044166666667
+2018-11-19 00:00:00,5303.9425
+2018-11-20 00:00:00,4671.97
+2018-11-21 00:00:00,4533.680833333334
+2018-11-22 00:00:00,4548.7975
+2018-11-23 00:00:00,4309.337500000001
+2018-11-24 00:00:00,4293.840833333333
+2018-11-25 00:00:00,3823.5116666666668
+2018-11-26 00:00:00,3920.5366666666664
+2018-11-27 00:00:00,3751.6683333333344
+2018-11-28 00:00:00,4103.453846153846
+2018-11-29 00:00:00,4263.783333333334
+2018-11-30 00:00:00,4106.871666666667
+2018-12-01 00:00:00,4116.777499999999
+2018-12-02 00:00:00,4167.546666666666
+2018-12-03 00:00:00,3967.5241666666666
+2018-12-04 00:00:00,3961.493333333334
+2018-12-05 00:00:00,3858.3491666666664
+2018-12-06 00:00:00,3742.943333333334
+2018-12-07 00:00:00,3405.6433333333334
+2018-12-08 00:00:00,3435.34
+2018-12-09 00:00:00,3528.8033333333333
+2018-12-10 00:00:00,3523.9600000000005
+2018-12-11 00:00:00,3426.19
+2018-12-12 00:00:00,3462.0399999999995
+2018-12-13 00:00:00,3406.7625000000007
+2018-12-14 00:00:00,3278.3741666666665
+2018-12-15 00:00:00,3225.299166666667
+2018-12-16 00:00:00,3271.238333333333
+2018-12-17 00:00:00,3392.405
+2018-12-18 00:00:00,3567.47
+2018-12-19 00:00:00,3808.0424999999996
+2018-12-20 00:00:00,3982.850833333334
+2018-12-21 00:00:00,4015.6091666666666
+2018-12-22 00:00:00,3910.973333333333
+2018-12-23 00:00:00,4027.478333333334
+2018-12-24 00:00:00,4178.590833333333
+2018-12-25 00:00:00,3813.879999999999
+2018-12-26 00:00:00,3825.3791666666675
+2018-12-27 00:00:00,3747.839166666666
+2018-12-28 00:00:00,3743.905
+2018-12-29 00:00:00,3912.285833333334
+2018-12-30 00:00:00,3832.9216666666666
+2018-12-31 00:00:00,3791.5458333333336
+2019-01-01 00:00:00,3752.271666666667
+2019-01-02 00:00:00,3867.138333333334
+2019-01-03 00:00:00,3865.7975
+2019-01-04 00:00:00,3822.626666666667
+2019-01-05 00:00:00,3868.4875000000006
+2019-01-06 00:00:00,3920.4566666666665
+2019-01-07 00:00:00,4036.093333333333
+2019-01-08 00:00:00,4035.8549999999996
+2019-01-09 00:00:00,4034.138333333333
+2019-01-10 00:00:00,3812.5858333333326
+2019-01-11 00:00:00,3656.7358333333327
+2019-01-12 00:00:00,3646.3458333333333
+2019-01-13 00:00:00,3599.841666666667
+2019-01-14 00:00:00,3604.1175
+2019-01-15 00:00:00,3656.7850000000003
+2019-01-16 00:00:00,3621.2708333333335
+2019-01-17 00:00:00,3619.9641666666666
+2019-01-18 00:00:00,3632.395
+2019-01-19 00:00:00,3690.523333333333
+2019-01-20 00:00:00,3620.1275
+2019-01-21 00:00:00,3548.4275
+2019-01-22 00:00:00,3558.924166666666
+2019-01-23 00:00:00,3579.896666666666
+2019-01-24 00:00:00,3567.299166666667
+2019-01-25 00:00:00,3572.735
+2019-01-26 00:00:00,3589.2608333333337
+2019-01-27 00:00:00,3567.763333333334
+2019-01-28 00:00:00,3458.066666666667
+2019-01-29 00:00:00,3417.1675
+2019-01-30 00:00:00,3452.223333333333
+2019-01-31 00:00:00,3454.008823529412
+2019-02-01 00:00:00,3454.194615384615
+2019-02-02 00:00:00,3470.0791666666664
+2019-02-03 00:00:00,3468.3050000000003
+2019-02-04 00:00:00,3452.3283333333334
+2019-02-05 00:00:00,3458.703333333333
+2019-02-06 00:00:00,3406.8208333333337
+2019-02-07 00:00:00,3403.9641666666666
+2019-02-08 00:00:00,3498.868333333334
+2019-02-09 00:00:00,3652.2116666666666
+2019-02-10 00:00:00,3645.2766666666666
+2019-02-11 00:00:00,3634.769999999999
+2019-02-12 00:00:00,3624.155833333334
+2019-02-13 00:00:00,3623.0716666666667
+2019-02-14 00:00:00,3609.869166666667
+2019-02-15 00:00:00,3610.7483333333334
+2019-02-16 00:00:00,3630.396666666666
+2019-02-17 00:00:00,3631.5533333333333
+2019-02-18 00:00:00,3810.7815384615387
+2019-02-19 00:00:00,3933.1433333333334
+2019-02-20 00:00:00,3951.565
+2019-02-21 00:00:00,3948.411666666667
+2019-02-22 00:00:00,3968.6566666666663
+2019-02-23 00:00:00,4018.0441666666666
+2019-02-24 00:00:00,4020.1258333333335
+2019-02-25 00:00:00,3829.568333333334
+2019-02-26 00:00:00,3833.3108333333334
+2019-02-27 00:00:00,3832.613076923077
+2019-02-28 00:00:00,3843.5833333333335
+2019-03-01 00:00:00,3842.1391666666664
+2019-03-02 00:00:00,3827.4874999999993
+2019-03-03 00:00:00,3827.6908333333326
+2019-03-04 00:00:00,3749.568333333333
+2019-03-05 00:00:00,3793.2608333333337
+2019-03-06 00:00:00,3863.3333333333335
+2019-03-07 00:00:00,3888.7016666666673
+2019-03-08 00:00:00,3905.058333333333
+2019-03-09 00:00:00,3919.5658333333336
+2019-03-10 00:00:00,3922.6150000000002
+2019-03-11 00:00:00,3896.718333333333
+2019-03-12 00:00:00,3880.7675
+2019-03-13 00:00:00,3881.3792307692306
+2019-03-14 00:00:00,3883.9892857142854
+2019-03-15 00:00:00,3918.0866666666666
+2019-03-16 00:00:00,4011.092500000001
+2019-03-17 00:00:00,3994.3483333333334
+2019-03-18 00:00:00,3998.4975
+2019-03-19 00:00:00,4008.6583333333333
+2019-03-20 00:00:00,4025.0258333333327
+2019-03-21 00:00:00,4026.6358333333333
+2019-03-22 00:00:00,4000.3350000000005
+2019-03-23 00:00:00,4006.1158333333333
+2019-03-24 00:00:00,3995.3233333333333
+2019-03-25 00:00:00,3977.4541666666664
+2019-03-26 00:00:00,3933.9541666666664
+2019-03-27 00:00:00,4011.3658333333333
+2019-03-28 00:00:00,4034.056666666666
+2019-03-29 00:00:00,4075.5264285714293
+2019-03-30 00:00:00,4107.340833333334
+2019-03-31 00:00:00,4109.316666666667
+2019-04-01 00:00:00,4145.108461538462
+2019-04-02 00:00:00,4675.1125
+2019-04-03 00:00:00,5018.498333333334
+2019-04-04 00:00:00,4970.849166666668
+2019-04-05 00:00:00,4980.8983333333335
+2019-04-06 00:00:00,5042.517692307692
+2019-04-07 00:00:00,5126.8341666666665
+2019-04-08 00:00:00,5214.276666666666
+2019-04-09 00:00:00,5197.750769230769
+2019-04-10 00:00:00,5251.1900000000005
+2019-04-11 00:00:00,5111.7707692307695
+2019-04-12 00:00:00,5031.474999999999
+2019-04-13 00:00:00,5076.3
+2019-04-14 00:00:00,5077.805
+2019-04-15 00:00:00,5114.854166666667
+2019-04-16 00:00:00,5109.946666666667
+2019-04-17 00:00:00,5214.574166666666
+2019-04-18 00:00:00,5263.397499999999
+2019-04-19 00:00:00,5255.614166666667
+2019-04-20 00:00:00,5302.9575
+2019-04-21 00:00:00,5274.145833333333
+2019-04-22 00:00:00,5305.275000000001
+2019-04-23 00:00:00,5527.801666666666
+2019-04-24 00:00:00,5465.514999999999
+2019-04-25 00:00:00,5421.526666666667
+2019-04-26 00:00:00,5280.616666666666
+2019-04-27 00:00:00,5281.809166666665
+2019-04-28 00:00:00,5306.695000000001
+2019-04-29 00:00:00,5277.883333333334
+2019-04-30 00:00:00,5262.363333333334
+2019-05-01 00:00:00,5310.173333333334
+2019-05-02 00:00:00,5364.991666666667
+2019-05-03 00:00:00,5633.7475
+2019-05-04 00:00:00,5697.923333333333
+2019-05-05 00:00:00,5718.229166666667
+2019-05-06 00:00:00,5654.353333333333
+2019-05-07 00:00:00,5863.5233333333335
+2019-05-08 00:00:00,5851.670769230769
+2019-05-09 00:00:00,6056.4175
+2019-05-10 00:00:00,6302.6125
+2019-05-11 00:00:00,6833.350833333334
+2019-05-12 00:00:00,7152.484166666666
+2019-05-13 00:00:00,7447.114166666666
+2019-05-14 00:00:00,8005.250833333334
+2019-05-15 00:00:00,8063.895833333333
+2019-05-16 00:00:00,7979.575000000001
+2019-05-17 00:00:00,7265.963333333332
+2019-05-18 00:00:00,7338.520833333332
+2019-05-19 00:00:00,7894.926666666666
+2019-05-20 00:00:00,7926.704999999999
+2019-05-21 00:00:00,7954.808333333333
+2019-05-22 00:00:00,7896.510833333333
+2019-05-23 00:00:00,7688.525833333332
+2019-05-24 00:00:00,7972.719166666667
+2019-05-25 00:00:00,8046.107692307693
+2019-05-26 00:00:00,8114.932499999999
+2019-05-27 00:00:00,8779.970833333333
+2019-05-28 00:00:00,8727.900833333333
+2019-05-29 00:00:00,8646.195000000002
+2019-05-30 00:00:00,8641.891666666668
+2019-05-31 00:00:00,8342.770000000002
+2019-06-01 00:00:00,8543.03
+2019-06-02 00:00:00,8663.6425
+2019-06-03 00:00:00,8546.171666666667
+2019-06-04 00:00:00,7848.4158333333335
+2019-06-05 00:00:00,7765.688333333334
+2019-06-06 00:00:00,7756.9575
+2019-06-07 00:00:00,7920.945000000001
+2019-06-08 00:00:00,7941.221666666667
+2019-06-09 00:00:00,7817.768333333333
+2019-06-10 00:00:00,7815.135833333333
+2019-06-11 00:00:00,7914.5391666666665
+2019-06-12 00:00:00,8033.306666666667
+2019-06-13 00:00:00,8163.663333333334
+2019-06-14 00:00:00,8342.24076923077
+2019-06-15 00:00:00,8721.645
+2019-06-16 00:00:00,9096.285833333333
+2019-06-17 00:00:00,9227.124999999998
+2019-06-18 00:00:00,9160.0675
+2019-06-19 00:00:00,9147.005
+2019-06-20 00:00:00,9346.0725
+2019-06-21 00:00:00,9791.017499999998
+2019-06-22 00:00:00,10730.391666666666
+2019-06-23 00:00:00,10748.011666666667
+2019-06-24 00:00:00,10851.848333333333
+2019-06-25 00:00:00,11314.76153846154
+2019-06-26 00:00:00,12686.38833333333
+2019-06-27 00:00:00,11834.124166666668
+2019-06-28 00:00:00,11665.575833333334
+2019-06-29 00:00:00,11886.886153846155
+2019-06-30 00:00:00,11545.633333333331
+2019-07-01 00:00:00,10690.833333333336
+2019-07-02 00:00:00,10300.487500000001
+2019-07-03 00:00:00,11342.3175
+2019-07-04 00:00:00,11779.450833333334
+2019-07-05 00:00:00,11118.887499999999
+2019-07-06 00:00:00,11411.616666666669
+2019-07-07 00:00:00,11310.506666666668
+2019-07-08 00:00:00,11788.069166666668
+2019-07-09 00:00:00,12567.703846153845
+2019-07-10 00:00:00,12668.629166666668
+2019-07-11 00:00:00,11560.6025
+2019-07-12 00:00:00,11577.695384615385
+2019-07-13 00:00:00,11412.124166666668
+2019-07-14 00:00:00,10852.926666666668
+2019-07-15 00:00:00,10438.554166666667
+2019-07-16 00:00:00,10300.411666666667
+2019-07-17 00:00:00,9584.475833333332
+2019-07-18 00:00:00,10092.751666666667
+2019-07-19 00:00:00,10455.73
+2019-07-20 00:00:00,10685.415
+2019-07-21 00:00:00,10569.304999999998
+2019-07-22 00:00:00,10449.626666666667
+2019-07-23 00:00:00,10044.113333333336
+2019-07-24 00:00:00,9708.435833333331
+2019-07-25 00:00:00,10021.325
+2019-07-26 00:00:00,9774.2575
+2019-07-27 00:00:00,9725.4025
+2019-07-28 00:00:00,9500.324166666665
+2019-07-29 00:00:00,9533.979333333333
+2019-07-30 00:00:00,9539.7125
+2019-07-31 00:00:00,9873.811666666668
+2019-08-01 00:00:00,10088.799999999997
+2019-08-02 00:00:00,10478.901666666667
+2019-08-03 00:00:00,10790.63
+2019-08-04 00:00:00,10826.275000000001
+2019-08-05 00:00:00,11713.161666666667
+2019-08-06 00:00:00,11759.019166666667
+2019-08-07 00:00:00,11703.738333333335
+2019-08-08 00:00:00,11803.88833333333
+2019-08-09 00:00:00,11816.912499999999
+2019-08-10 00:00:00,11586.1725
+2019-08-11 00:00:00,11377.804166666669
+2019-08-12 00:00:00,11397.801666666666
+2019-08-13 00:00:00,11144.38916666667
+2019-08-14 00:00:00,10450.813333333334
+2019-08-15 00:00:00,9988.947499999998
+2019-08-16 00:00:00,10230.733333333332
+2019-08-17 00:00:00,10292.383333333333
+2019-08-18 00:00:00,10295.117500000002
+2019-08-19 00:00:00,10605.825833333334
+2019-08-20 00:00:00,10746.507692307692
+2019-08-21 00:00:00,10169.094166666666
+2019-08-22 00:00:00,10030.746666666666
+2019-08-23 00:00:00,10255.9775
+2019-08-24 00:00:00,10158.540833333334
From bf033d21eec351a25202552708cb7371b7265aa2 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:57:59 +0530
Subject: [PATCH 4/7] change
---
Bitcoin price prediction/Readme.txt | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/Bitcoin price prediction/Readme.txt b/Bitcoin price prediction/Readme.txt
index 110ed9b..8cffeba 100644
--- a/Bitcoin price prediction/Readme.txt
+++ b/Bitcoin price prediction/Readme.txt
@@ -1 +1,3 @@
-v
+Bitcoin-price-Prediction-using-LSTM
+Bitcoin price Prediction ( Time Series ) using LSTM Recurrent neural network
+
From 76eb374d4e119656a152fdfa0a1c7cc0c23d12d0 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:58:28 +0530
Subject: [PATCH 5/7] change
---
Bitcoin price prediction/Readme.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/Bitcoin price prediction/Readme.txt b/Bitcoin price prediction/Readme.txt
index 8cffeba..c09f8b8 100644
--- a/Bitcoin price prediction/Readme.txt
+++ b/Bitcoin price prediction/Readme.txt
@@ -1,3 +1,3 @@
-Bitcoin-price-Prediction-using-LSTM
+# Bitcoin-price-Prediction-using-LSTM
Bitcoin price Prediction ( Time Series ) using LSTM Recurrent neural network
From 1c94da12c91d19b4b8830aaccd521dbb1c377e54 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 16:58:51 +0530
Subject: [PATCH 6/7] Changed
---
Bitcoin price prediction/Readme.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/Bitcoin price prediction/Readme.txt b/Bitcoin price prediction/Readme.txt
index c09f8b8..8cffeba 100644
--- a/Bitcoin price prediction/Readme.txt
+++ b/Bitcoin price prediction/Readme.txt
@@ -1,3 +1,3 @@
-# Bitcoin-price-Prediction-using-LSTM
+Bitcoin-price-Prediction-using-LSTM
Bitcoin price Prediction ( Time Series ) using LSTM Recurrent neural network
From ecc46e96f1a0c44f81f90e33221d0c87cf929948 Mon Sep 17 00:00:00 2001
From: Aditya kumar <36192662+connectaditya@users.noreply.github.com>
Date: Sat, 25 Apr 2020 17:01:06 +0530
Subject: [PATCH 7/7] changed
---
README.md | 4 +++-
1 file changed, 3 insertions(+), 1 deletion(-)
diff --git a/README.md b/README.md
index cd6fd2f..1a77304 100644
--- a/README.md
+++ b/README.md
@@ -35,4 +35,6 @@ Deep Learning model (using Keras) to label satellite images.
## [Predicting IMDB movie rating](https://github.com/alexattia/Data-Science-Projects/tree/master/KaggleMovieRating)
Project inspired by Chuan Sun [work](https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset)
How can we tell the greatness of a movie ?
-Scrapping and Machine Learning
\ No newline at end of file
+Scrapping and Machine Learning
+
+## [Bitcoin price prediction](https://github.com/connectaditya/Data-Science-Projects/tree/master/Bitcoin%20price%20prediction)