English | 简体中文 | 繁體中文 | 한국어 | Español | 日本語 | हिन्दी | Русский | Рortuguês | తెలుగు | Français | Deutsch | Tiếng Việt |
🤗 Transformers 提供了數以千計的預訓練模型,支援 100 多種語言的文本分類、資訊擷取、問答、摘要、翻譯、文本生成。它的宗旨是讓最先進的 NLP 技術人人易用。
🤗 Transformers 提供了便於快速下載和使用的API,讓你可以將預訓練模型用在給定文本、在你的資料集上微調然後經由 model hub 與社群共享。同時,每個定義的 Python 模組架構均完全獨立,方便修改和快速研究實驗。
🤗 Transformers 支援三個最熱門的深度學習函式庫: Jax, PyTorch 以及 TensorFlow — 並與之完美整合。你可以直接使用其中一個框架訓練你的模型,然後用另一個載入和推論。
你可以直接在 model hub 上測試大多數的模型。我們也提供了 私有模型託管、模型版本管理以及推論API。
這裡是一些範例:
- 用 BERT 做遮蓋填詞
- 用 Electra 做專有名詞辨識
- 用 GPT-2 做文本生成
- 用 RoBERTa 做自然語言推論
- 用 BART 做文本摘要
- 用 DistilBERT 做問答
- 用 T5 做翻譯
Write With Transformer,由 Hugging Face 團隊所打造,是一個文本生成的官方 demo。
我們為快速使用模型提供了 pipeline
API。 Pipeline 包含了預訓練模型和對應的文本預處理。下面是一個快速使用 pipeline 去判斷正負面情緒的例子:
>>> from transformers import pipeline
# 使用情緒分析 pipeline
>>> classifier = pipeline('sentiment-analysis')
>>> classifier('We are very happy to introduce pipeline to the transformers repository.')
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]
第二行程式碼下載並快取 pipeline 使用的預訓練模型,而第三行程式碼則在給定的文本上進行了評估。這裡的答案“正面” (positive) 具有 99.97% 的信賴度。
許多的 NLP 任務都有隨選即用的預訓練 pipeline
。例如,我們可以輕鬆地從給定文本中擷取問題答案:
>>> from transformers import pipeline
# 使用問答 pipeline
>>> question_answerer = pipeline('question-answering')
>>> question_answerer({
... 'question': 'What is the name of the repository ?',
... 'context': 'Pipeline has been included in the huggingface/transformers repository'
... })
{'score': 0.30970096588134766, 'start': 34, 'end': 58, 'answer': 'huggingface/transformers'}
除了提供問題解答,預訓練模型還提供了對應的信賴度分數以及解答在 tokenized 後的文本中開始和結束的位置。你可以從這個教學了解更多 pipeline
API支援的任務。
要在你的任務中下載和使用任何預訓練模型很簡單,只需三行程式碼。這裡是 PyTorch 版的範例:
>>> from transformers import AutoTokenizer, AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = AutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="pt")
>>> outputs = model(**inputs)
這裡是對應的 TensorFlow 程式碼:
>>> from transformers import AutoTokenizer, TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = TFAutoModel.from_pretrained("google-bert/bert-base-uncased")
>>> inputs = tokenizer("Hello world!", return_tensors="tf")
>>> outputs = model(**inputs)
Tokenizer 為所有的預訓練模型提供了預處理,並可以直接轉換單一字串(比如上面的例子)或串列 (list)。它會輸出一個的字典 (dict) 讓你可以在下游程式碼裡使用或直接藉由 **
運算式傳給模型。
模型本身是一個常規的 Pytorch nn.Module
或 TensorFlow tf.keras.Model
(取決於你的後端),可依常規方式使用。 這個教學解釋了如何將這樣的模型整合到一般的 PyTorch 或 TensorFlow 訓練迴圈中,或是如何使用我們的 Trainer
API 在一個新的資料集上快速進行微調。
-
便於使用的先進模型:
- NLU 和 NLG 上性能卓越
- 對教學和實作友好且低門檻
- 高度抽象,使用者只須學習 3 個類別
- 對所有模型使用的制式化API
-
更低的運算成本,更少的碳排放:
- 研究人員可以分享已訓練的模型而非每次從頭開始訓練
- 工程師可以減少計算時間以及生產成本
- 數十種模型架構、兩千多個預訓練模型、100多種語言支援
-
對於模型生命週期的每一個部分都面面俱到:
- 訓練先進的模型,只需 3 行程式碼
- 模型可以在不同深度學習框架之間任意轉換
- 為訓練、評估和生產選擇最適合的框架,並完美銜接
-
為你的需求輕鬆客製化專屬模型和範例:
- 我們為每種模型架構提供了多個範例來重現原論文結果
- 一致的模型內部架構
- 模型檔案可單獨使用,便於修改和快速實驗
- 本函式庫並不是模組化的神經網絡工具箱。模型文件中的程式碼並未做額外的抽象封裝,以便研究人員快速地翻閱及修改程式碼,而不會深陷複雜的類別包裝之中。
Trainer
API 並非相容任何模型,它只為本函式庫中的模型最佳化。對於一般的機器學習用途,請使用其他函式庫。- 儘管我們已盡力而為,examples 目錄中的腳本也僅為範例而已。對於特定問題,它們並不一定隨選即用,可能需要修改幾行程式碼以符合需求。
這個 Repository 已在 Python 3.8+、Flax 0.4.1+、PyTorch 1.11+ 和 TensorFlow 2.6+ 下經過測試。
你可以在虛擬環境中安裝 🤗 Transformers。如果你還不熟悉 Python 的虛擬環境,請閱此使用者指引。
首先,用你打算使用的版本的 Python 創建一個虛擬環境並進入。
然後,你需要安裝 Flax、PyTorch 或 TensorFlow 其中之一。對於該如何在你使用的平台上安裝這些框架,請參閱 TensorFlow 安裝頁面, PyTorch 安裝頁面 或 Flax 安裝頁面。
當其中一個後端安裝成功後,🤗 Transformers 可依此安裝:
pip install transformers
如果你想要試試範例或者想在正式發布前使用最新開發中的程式碼,你必須從原始碼安裝。
🤗 Transformers 可以藉由 conda 依此安裝:
conda install conda-forge::transformers
筆記: 從
huggingface
頻道安裝transformers
已被淘汰。
要藉由 conda 安裝 Flax、PyTorch 或 TensorFlow 其中之一,請參閱它們各自安裝頁面的說明。
🤗 Transformers 支援的所有的模型檢查點,由使用者和組織上傳,均與 huggingface.co model hub 完美結合。
🤗 Transformers 目前支援以下的架構(模型概覽請參閱這裡):
- ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
- ALIGN (from Google Research) released with the paper Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
- AltCLIP (from BAAI) released with the paper AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
- Audio Spectrogram Transformer (from MIT) released with the paper AST: Audio Spectrogram Transformer by Yuan Gong, Yu-An Chung, James Glass.
- Autoformer (from Tsinghua University) released with the paper Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting by Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long.
- Bark (from Suno) released in the repository suno-ai/bark by Suno AI team.
- BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
- BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
- BARTpho (from VinAI Research) released with the paper BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
- BEiT (from Microsoft) released with the paper BEiT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong, Furu Wei.
- BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
- BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- BERTweet (from VinAI Research) released with the paper BERTweet: A pre-trained language model for English Tweets by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
- BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- BioGpt (from Microsoft Research AI4Science) released with the paper BioGPT: generative pre-trained transformer for biomedical text generation and mining by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
- BiT (from Google AI) released with the paper [Big Transfer (BiT) by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
- Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BLIP (from Salesforce) released with the paper BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
- BLIP-2 (from Salesforce) released with the paper BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models by Junnan Li, Dongxu Li, Silvio Savarese, Steven Hoi.
- BLOOM (from BigScience workshop) released by the BigScience Workshop.
- BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
- BridgeTower (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
- BROS (from NAVER CLOVA) released with the paper BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents by Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park.
- ByT5 (from Google Research) released with the paper ByT5: Towards a token-free future with pre-trained byte-to-byte models by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
- CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
- CANINE (from Google Research) released with the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
- Chinese-CLIP (from OFA-Sys) released with the paper Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
- CLAP (from LAION-AI) released with the paper Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption Augmentation by Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, Shlomo Dubnov.
- CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
- CLIPSeg (from University of Göttingen) released with the paper Image Segmentation Using Text and Image Prompts by Timo Lüddecke and Alexander Ecker.
- CLVP released with the paper Better speech synthesis through scaling by James Betker.
- CodeGen (from Salesforce) released with the paper A Conversational Paradigm for Program Synthesis by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
- CodeLlama (from MetaAI) released with the paper Code Llama: Open Foundation Models for Code by Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve.
- Cohere (from Cohere) released with the paper Command-R: Retrieval Augmented Generation at Production Scale by Cohere.
- Conditional DETR (from Microsoft Research Asia) released with the paper Conditional DETR for Fast Training Convergence by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
- ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
- ConvNeXT (from Facebook AI) released with the paper A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
- ConvNeXTV2 (from Facebook AI) released with the paper ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
- CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
- CPM-Ant (from OpenBMB) released by the OpenBMB.
- CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
- CvT (from Microsoft) released with the paper CvT: Introducing Convolutions to Vision Transformers by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
- Data2Vec (from Facebook) released with the paper Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
- DBRX (from Databricks) released with the paper Introducing DBRX: A New State-of-the-Art Open LLM by the Mosaic Research Team.
- DeBERTa (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- Decision Transformer (from Berkeley/Facebook/Google) released with the paper Decision Transformer: Reinforcement Learning via Sequence Modeling by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
- Deformable DETR (from SenseTime Research) released with the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
- DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
- DePlot (from Google AI) released with the paper DePlot: One-shot visual language reasoning by plot-to-table translation by Fangyu Liu, Julian Martin Eisenschlos, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Wenhu Chen, Nigel Collier, Yasemin Altun.
- Depth Anything (from University of Hong Kong and TikTok) released with the paper Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data by Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, Hengshuang Zhao.
- DETA (from The University of Texas at Austin) released with the paper NMS Strikes Back by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
- DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
- DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
- DiNAT (from SHI Labs) released with the paper Dilated Neighborhood Attention Transformer by Ali Hassani and Humphrey Shi.
- DINOv2 (from Meta AI) released with the paper DINOv2: Learning Robust Visual Features without Supervision by Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, Piotr Bojanowski.
- DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
- DiT (from Microsoft Research) released with the paper DiT: Self-supervised Pre-training for Document Image Transformer by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
- Donut (from NAVER) released with the paper OCR-free Document Understanding Transformer by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
- DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
- DPT (from Intel Labs) released with the paper Vision Transformers for Dense Prediction by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
- EfficientFormer (from Snap Research) released with the paper EfficientFormer: Vision Transformers at MobileNetSpeed by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
- EfficientNet (from Google Brain) released with the paper EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Mingxing Tan, Quoc V. Le.
- ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
- EnCodec (from Meta AI) released with the paper High Fidelity Neural Audio Compression by Alexandre Défossez, Jade Copet, Gabriel Synnaeve, Yossi Adi.
- EncoderDecoder (from Google Research) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- ERNIE (from Baidu) released with the paper ERNIE: Enhanced Representation through Knowledge Integration by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
- ErnieM (from Baidu) released with the paper ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora by Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, Haifeng Wang.
- ESM (from Meta AI) are transformer protein language models. ESM-1b was released with the paper Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. ESM-1v was released with the paper Language models enable zero-shot prediction of the effects of mutations on protein function by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. ESM-2 was released with the paper Language models of protein sequences at the scale of evolution enable accurate structure prediction by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
- Falcon (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme.
- FastSpeech2Conformer (from ESPnet and Microsoft Research) released with the paper Recent Developments On Espnet Toolkit Boosted By Conformer by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
- FLAN-T5 (from Google AI) released in the repository google-research/t5x by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
- FLAN-UL2 (from Google AI) released in the repository google-research/t5x by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
- FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
- FLAVA (from Facebook AI) released with the paper FLAVA: A Foundational Language And Vision Alignment Model by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
- FNet (from Google Research) released with the paper FNet: Mixing Tokens with Fourier Transforms by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
- FocalNet (from Microsoft Research) released with the paper Focal Modulation Networks by Jianwei Yang, Chunyuan Li, Xiyang Dai, Lu Yuan, Jianfeng Gao.
- Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
- Fuyu (from ADEPT) Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani, Sağnak Taşırlar. Released with the paper blog post
- Gemma (from Google) released with the paper Gemma: Open Models Based on Gemini Technology and Research by the Gemma Google team.
- GIT (from Microsoft Research) released with the paper GIT: A Generative Image-to-text Transformer for Vision and Language by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
- GLPN (from KAIST) released with the paper Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
- GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
- GPT NeoX (from EleutherAI) released with the paper GPT-NeoX-20B: An Open-Source Autoregressive Language Model by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
- GPT NeoX Japanese (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
- GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
- GPT-J (from EleutherAI) released with the paper kingoflolz/mesh-transformer-jax by Ben Wang and Aran Komatsuzaki.
- GPT-Sw3 (from AI-Sweden) released with the paper Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
- GPTBigCode (from BigCode) released with the paper SantaCoder: don't reach for the stars! by Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
- GPTSAN-japanese released in the repository tanreinama/GPTSAN by 坂本俊之(tanreinama).
- Graphormer (from Microsoft) released with the paper Do Transformers Really Perform Bad for Graph Representation? by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
- Grounding DINO (from Institute for AI, Tsinghua-Bosch Joint Center for ML, Tsinghua University, IDEA Research and others) released with the paper Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection by Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun Zhu, Lei Zhang.
- GroupViT (from UCSD, NVIDIA) released with the paper GroupViT: Semantic Segmentation Emerges from Text Supervision by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
- HerBERT (from Allegro.pl, AGH University of Science and Technology) released with the paper KLEJ: Comprehensive Benchmark for Polish Language Understanding by Piotr Rybak, Robert Mroczkowski, Janusz Tracz, Ireneusz Gawlik.
- Hubert (from Facebook) released with the paper HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
- I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
- IDEFICS (from HuggingFace) released with the paper OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh.
- Idefics2 (from Hugging Face) released with the paper IDEFICS2 by Léo Tronchon, Hugo Laurencon, Victor Sanh.
- ImageGPT (from OpenAI) released with the paper Generative Pretraining from Pixels by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
- Informer (from Beihang University, UC Berkeley, Rutgers University, SEDD Company) released with the paper Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting by Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
- InstructBLIP (from Salesforce) released with the paper InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning by Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, Steven Hoi.
- Jamba (from AI21 Labs Ltd.) released with the paper Jamba: A Hybrid Transformer-Mamba Language Model by Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman, Roman Glozman, Michael Gokhman, Avshalom Manevich, Nir Ratner, Noam Rozen, Erez Shwartz, Mor Zusman, Yoav Shoham.
- Jukebox (from OpenAI) released with the paper Jukebox: A Generative Model for Music by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
- KOSMOS-2 (from Microsoft Research Asia) released with the paper Kosmos-2: Grounding Multimodal Large Language Models to the World by Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Furu Wei.
- LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
- LayoutLMv2 (from Microsoft Research Asia) released with the paper LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
- LayoutLMv3 (from Microsoft Research Asia) released with the paper LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
- LayoutXLM (from Microsoft Research Asia) released with the paper LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
- LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- LeViT (from Meta AI) released with the paper LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
- LiLT (from South China University of Technology) released with the paper LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding by Jiapeng Wang, Lianwen Jin, Kai Ding.
- LLaMA (from The FAIR team of Meta AI) released with the paper LLaMA: Open and Efficient Foundation Language Models by Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample.
- Llama2 (from The FAIR team of Meta AI) released with the paper Llama2: Open Foundation and Fine-Tuned Chat Models by Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushka rMishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing EllenTan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom..
- LLaVa (from Microsoft Research & University of Wisconsin-Madison) released with the paper Visual Instruction Tuning by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
- LLaVA-NeXT (from Microsoft Research & University of Wisconsin-Madison) released with the paper Improved Baselines with Visual Instruction Tuning by Haotian Liu, Chunyuan Li, Yuheng Li and Yong Jae Lee.
- Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- LongT5 (from Google AI) released with the paper LongT5: Efficient Text-To-Text Transformer for Long Sequences by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
- LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
- LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
- M-CTC-T (from Facebook) released with the paper Pseudo-Labeling For Massively Multilingual Speech Recognition by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
- M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
- MADLAD-400 (from Google) released with the paper MADLAD-400: A Multilingual And Document-Level Large Audited Dataset by Sneha Kudugunta, Isaac Caswell, Biao Zhang, Xavier Garcia, Christopher A. Choquette-Choo, Katherine Lee, Derrick Xin, Aditya Kusupati, Romi Stella, Ankur Bapna, Orhan Firat.
- Mamba (from Albert Gu and Tri Dao) released with the paper Mamba: Linear-Time Sequence Modeling with Selective State Spaces by Albert Gu and Tri Dao.
- MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
- MarkupLM (from Microsoft Research Asia) released with the paper MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
- Mask2Former (from FAIR and UIUC) released with the paper Masked-attention Mask Transformer for Universal Image Segmentation by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
- MaskFormer (from Meta and UIUC) released with the paper Per-Pixel Classification is Not All You Need for Semantic Segmentation by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov
- MatCha (from Google AI) released with the paper MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering by Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
- mBART (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
- mBART-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
- MEGA (from Facebook) released with the paper Mega: Moving Average Equipped Gated Attention by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan May, and Luke Zettlemoyer.
- Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- MGP-STR (from Alibaba Research) released with the paper Multi-Granularity Prediction for Scene Text Recognition by Peng Wang, Cheng Da, and Cong Yao.
- Mistral (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed..
- Mixtral (from Mistral AI) by The Mistral AI team: Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
- mLUKE (from Studio Ousia) released with the paper mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
- MMS (from Facebook) released with the paper Scaling Speech Technology to 1,000+ Languages by Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli.
- MobileBERT (from CMU/Google Brain) released with the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
- MobileNetV1 (from Google Inc.) released with the paper MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
- MobileNetV2 (from Google Inc.) released with the paper MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
- MobileViT (from Apple) released with the paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer by Sachin Mehta and Mohammad Rastegari.
- MobileViTV2 (from Apple) released with the paper Separable Self-attention for Mobile Vision Transformers by Sachin Mehta and Mohammad Rastegari.
- MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
- MPT (from MosaiML) released with the paper llm-foundry by the MosaicML NLP Team.
- MRA (from the University of Wisconsin - Madison) released with the paper Multi Resolution Analysis (MRA) for Approximate Self-Attention by Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, Vikas Singh.
- MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
- MusicGen (from Meta) released with the paper Simple and Controllable Music Generation by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
- MusicGen Melody (from Meta) released with the paper Simple and Controllable Music Generation by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez.
- MVP (from RUC AI Box) released with the paper MVP: Multi-task Supervised Pre-training for Natural Language Generation by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
- NAT (from SHI Labs) released with the paper Neighborhood Attention Transformer by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
- Nezha (from Huawei Noah’s Ark Lab) released with the paper NEZHA: Neural Contextualized Representation for Chinese Language Understanding by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
- NLLB (from Meta) released with the paper No Language Left Behind: Scaling Human-Centered Machine Translation by the NLLB team.
- NLLB-MOE (from Meta) released with the paper No Language Left Behind: Scaling Human-Centered Machine Translation by the NLLB team.
- Nougat (from Meta AI) released with the paper Nougat: Neural Optical Understanding for Academic Documents by Lukas Blecher, Guillem Cucurull, Thomas Scialom, Robert Stojnic.
- Nyströmformer (from the University of Wisconsin - Madison) released with the paper Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
- OLMo (from AI2) released with the paper OLMo: Accelerating the Science of Language Models by Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hannaneh Hajishirzi.
- OneFormer (from SHI Labs) released with the paper OneFormer: One Transformer to Rule Universal Image Segmentation by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
- OpenLlama (from s-JoL) released on GitHub (now removed).
- OPT (from Meta AI) released with the paper OPT: Open Pre-trained Transformer Language Models by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
- OWL-ViT (from Google AI) released with the paper Simple Open-Vocabulary Object Detection with Vision Transformers by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
- OWLv2 (from Google AI) released with the paper Scaling Open-Vocabulary Object Detection by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
- PatchTSMixer (from IBM Research) released with the paper TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting by Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
- PatchTST (from IBM) released with the paper A Time Series is Worth 64 Words: Long-term Forecasting with Transformers by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
- Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
- PEGASUS-X (from Google) released with the paper Investigating Efficiently Extending Transformers for Long Input Summarization by Jason Phang, Yao Zhao, Peter J. Liu.
- Perceiver IO (from Deepmind) released with the paper Perceiver IO: A General Architecture for Structured Inputs & Outputs by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
- Persimmon (from ADEPT) released with the paper blog post by Erich Elsen, Augustus Odena, Maxwell Nye, Sağnak Taşırlar, Tri Dao, Curtis Hawthorne, Deepak Moparthi, Arushi Somani.
- Phi (from Microsoft) released with the papers - Textbooks Are All You Need by Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee and Yuanzhi Li, Textbooks Are All You Need II: phi-1.5 technical report by Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar and Yin Tat Lee.
- PhoBERT (from VinAI Research) released with the paper PhoBERT: Pre-trained language models for Vietnamese by Dat Quoc Nguyen and Anh Tuan Nguyen.
- Pix2Struct (from Google) released with the paper Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova.
- PLBart (from UCLA NLP) released with the paper Unified Pre-training for Program Understanding and Generation by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
- PoolFormer (from Sea AI Labs) released with the paper MetaFormer is Actually What You Need for Vision by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
- Pop2Piano released with the paper Pop2Piano : Pop Audio-based Piano Cover Generation by Jongho Choi, Kyogu Lee.
- ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- PVT (from Nanjing University, The University of Hong Kong etc.) released with the paper Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
- PVTv2 (from Shanghai AI Laboratory, Nanjing University, The University of Hong Kong etc.) released with the paper PVT v2: Improved Baselines with Pyramid Vision Transformer by Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao.
- QDQBert (from NVIDIA) released with the paper Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
- Qwen2 (from the Qwen team, Alibaba Group) released with the paper Qwen Technical Report by Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou and Tianhang Zhu.
- Qwen2MoE (from the Qwen team, Alibaba Group) released with the paper blog post by Bo Zheng, Dayiheng Liu, Rui Men, Junyang Lin, Zhou San, Bowen Yu, An Yang, Mingfeng Xue, Fei Huang, Binyuan Hui, Mei Li, Tianyu Liu, Xingzhang Ren, Xuancheng Ren, Kexin Yang, Chang Zhou, Jingren Zhou.
- RAG (from Facebook) released with the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
- REALM (from Google Research) released with the paper REALM: Retrieval-Augmented Language Model Pre-Training by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
- RecurrentGemma (from Google) released with the paper RecurrentGemma: Moving Past Transformers for Efficient Open Language Models by the Griffin, RLHF and Gemma Teams.
- Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
- RegNet (from META Research) released with the paper Designing Network Design Space by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
- RemBERT (from Google Research) released with the paper Rethinking embedding coupling in pre-trained language models by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
- ResNet (from Microsoft Research) released with the paper Deep Residual Learning for Image Recognition by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
- RoBERTa (from Facebook), released together with the paper a RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
- RoBERTa-PreLayerNorm (from Facebook) released with the paper fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
- RoCBert (from WeChatAI) released with the paper RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
- RoFormer (from ZhuiyiTechnology), released together with the paper a RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
- RWKV (from Bo Peng) released with the paper this repo by Bo Peng.
- SeamlessM4T (from Meta AI) released with the paper SeamlessM4T — Massively Multilingual & Multimodal Machine Translation by the Seamless Communication team.
- SeamlessM4Tv2 (from Meta AI) released with the paper Seamless: Multilingual Expressive and Streaming Speech Translation by the Seamless Communication team.
- SegFormer (from NVIDIA) released with the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
- SegGPT (from Beijing Academy of Artificial Intelligence (BAAI) released with the paper SegGPT: Segmenting Everything In Context by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang.
- Segment Anything (from Meta AI) released with the paper Segment Anything by Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alex Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick.
- SEW (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
- SEW-D (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
- SigLIP (from Google AI) released with the paper Sigmoid Loss for Language Image Pre-Training by Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, Lucas Beyer.
- SpeechT5 (from Microsoft Research) released with the paper SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
- SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
- SpeechToTextTransformer2 (from Facebook) released with the paper Large-Scale Self- and Semi-Supervised Learning for Speech Translation by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
- Splinter (from Tel Aviv University) released with the paper Few-Shot Question Answering by Pretraining Span Selection by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
- SqueezeBERT (from Berkeley) released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
- StableLm released with the paper StableLM 3B 4E1T (Technical Report) by Jonathan Tow, Marco Bellagente, Dakota Mahan, Carlos Riquelme Ruiz, Duy Phung, Maksym Zhuravinskyi, Nathan Cooper, Nikhil Pinnaparaju, Reshinth Adithyan, and James Baicoianu.
- Starcoder2 (from BigCode team) released with the paper StarCoder 2 and The Stack v2: The Next Generation by Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
- SuperPoint (from MagicLeap) released with the paper SuperPoint: Self-Supervised Interest Point Detection and Description by Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich.
- SwiftFormer (from MBZUAI) released with the paper SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications by Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed, Salman Khan, Ming-Hsuan Yang, Fahad Shahbaz Khan.
- Swin Transformer (from Microsoft) released with the paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
- Swin Transformer V2 (from Microsoft) released with the paper Swin Transformer V2: Scaling Up Capacity and Resolution by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
- Swin2SR (from University of Würzburg) released with the paper Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
- SwitchTransformers (from Google) released with the paper Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity by William Fedus, Barret Zoph, Noam Shazeer.
- T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- T5v1.1 (from Google AI) released with the paper google-research/text-to-text-transfer-transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- Table Transformer (from Microsoft Research) released with the paper PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents by Brandon Smock, Rohith Pesala, Robin Abraham.
- TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
- TAPEX (from Microsoft Research) released with the paper TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
- Time Series Transformer (from HuggingFace).
- TimeSformer (from Facebook) released with the paper Is Space-Time Attention All You Need for Video Understanding? by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
- Trajectory Transformer (from the University of California at Berkeley) released with the paper Offline Reinforcement Learning as One Big Sequence Modeling Problem by Michael Janner, Qiyang Li, Sergey Levine
- Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
- TrOCR (from Microsoft) released with the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
- TVLT (from UNC Chapel Hill) released with the paper TVLT: Textless Vision-Language Transformer by Zineng Tang, Jaemin Cho, Yixin Nie, Mohit Bansal.
- TVP (from Intel) released with the paper Text-Visual Prompting for Efficient 2D Temporal Video Grounding by Yimeng Zhang, Xin Chen, Jinghan Jia, Sijia Liu, Ke Ding.
- UDOP (from Microsoft Research) released with the paper Unifying Vision, Text, and Layout for Universal Document Processing by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.
- UL2 (from Google Research) released with the paper Unifying Language Learning Paradigms by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
- UMT5 (from Google Research) released with the paper UniMax: Fairer and More Effective Language Sampling for Large-Scale Multilingual Pretraining by Hyung Won Chung, Xavier Garcia, Adam Roberts, Yi Tay, Orhan Firat, Sharan Narang, Noah Constant.
- UniSpeech (from Microsoft Research) released with the paper UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
- UniSpeechSat (from Microsoft Research) released with the paper UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
- UnivNet (from Kakao Corporation) released with the paper UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation by Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim.
- UPerNet (from Peking University) released with the paper Unified Perceptual Parsing for Scene Understanding by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
- VAN (from Tsinghua University and Nankai University) released with the paper Visual Attention Network by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
- VideoMAE (from Multimedia Computing Group, Nanjing University) released with the paper VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
- ViLT (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Wonjae Kim, Bokyung Son, Ildoo Kim.
- VipLlava (from University of Wisconsin–Madison) released with the paper Making Large Multimodal Models Understand Arbitrary Visual Prompts by Mu Cai, Haotian Liu, Siva Karthik Mustikovela, Gregory P. Meyer, Yuning Chai, Dennis Park, Yong Jae Lee.
- Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- VisualBERT (from UCLA NLP) released with the paper VisualBERT: A Simple and Performant Baseline for Vision and Language by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
- ViT Hybrid (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- VitDet (from Meta AI) released with the paper Exploring Plain Vision Transformer Backbones for Object Detection by Yanghao Li, Hanzi Mao, Ross Girshick, Kaiming He.
- ViTMAE (from Meta AI) released with the paper Masked Autoencoders Are Scalable Vision Learners by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
- ViTMatte (from HUST-VL) released with the paper ViTMatte: Boosting Image Matting with Pretrained Plain Vision Transformers by Jingfeng Yao, Xinggang Wang, Shusheng Yang, Baoyuan Wang.
- ViTMSN (from Meta AI) released with the paper Masked Siamese Networks for Label-Efficient Learning by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
- VITS (from Kakao Enterprise) released with the paper Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech by Jaehyeon Kim, Jungil Kong, Juhee Son.
- ViViT (from Google Research) released with the paper ViViT: A Video Vision Transformer by Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, Cordelia Schmid.
- Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
- Wav2Vec2-BERT (from Meta AI) released with the paper Seamless: Multilingual Expressive and Streaming Speech Translation by the Seamless Communication team.
- Wav2Vec2-Conformer (from Facebook AI) released with the paper FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
- Wav2Vec2Phoneme (from Facebook AI) released with the paper Simple and Effective Zero-shot Cross-lingual Phoneme Recognition by Qiantong Xu, Alexei Baevski, Michael Auli.
- WavLM (from Microsoft Research) released with the paper WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
- Whisper (from OpenAI) released with the paper Robust Speech Recognition via Large-Scale Weak Supervision by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
- X-CLIP (from Microsoft Research) released with the paper Expanding Language-Image Pretrained Models for General Video Recognition by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
- X-MOD (from Meta AI) released with the paper Lifting the Curse of Multilinguality by Pre-training Modular Transformers by Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, Mikel Artetxe.
- XGLM (From Facebook AI) released with the paper Few-shot Learning with Multilingual Language Models by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
- XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
- XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
- XLM-RoBERTa-XL (from Facebook AI) released with the paper Larger-Scale Transformers for Multilingual Masked Language Modeling by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
- XLM-V (from Meta AI) released with the paper XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models by Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke Zettlemoyer, Madian Khabsa.
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- XLS-R (from Facebook AI) released with the paper XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
- XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
- YOLOS (from Huazhong University of Science & Technology) released with the paper You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
- YOSO (from the University of Wisconsin - Madison) released with the paper You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
- 想要貢獻新的模型?我們這裡有一份詳細指引和模板來引導你加入新的模型。你可以在
templates
目錄中找到它們。記得查看貢獻指引並在開始寫 PR 前聯繫維護人員或開一個新的 issue 來獲得 feedbacks。
要檢查某個模型是否已有 Flax、PyTorch 或 TensorFlow 的實作,或其是否在🤗 Tokenizers 函式庫中有對應的 tokenizer,敬請參閱此表。
這些實作均已於多個資料集測試(請參閱範例腳本)並應與原版實作表現相當。你可以在範例文件的此節中了解實作的細節。
章節 | 描述 |
---|---|
文件 | 完整的 API 文件和教學 |
任務概覽 | 🤗 Transformers 支援的任務 |
預處理教學 | 使用 Tokenizer 來為模型準備資料 |
訓練和微調 | 使用 PyTorch/TensorFlow 的內建的訓練方式或於 Trainer API 中使用 🤗 Transformers 提供的模型 |
快速上手:微調和範例腳本 | 為各種任務提供的範例腳本 |
模型分享和上傳 | 上傳並與社群分享你微調的模型 |
遷移 | 從 pytorch-transformers 或 pytorch-pretrained-bert 遷移到 🤗 Transformers |
我們已將此函式庫的論文正式發表。如果你使用了 🤗 Transformers 函式庫,可以引用:
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}