forked from NVIDIA/TransformerEngine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
617 lines (524 loc) · 19.1 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
# Copyright (c) 2022-2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# See LICENSE for license information.
"""Installation script."""
import ctypes
from functools import lru_cache
import os
from pathlib import Path
import re
import shutil
import subprocess
from subprocess import CalledProcessError
import sys
import sysconfig
from typing import List, Optional, Tuple, Union
import setuptools
from setuptools.command.build_ext import build_ext
from te_version import te_version
# Project directory root
root_path: Path = Path(__file__).resolve().parent
@lru_cache(maxsize=1)
def with_debug_build() -> bool:
"""Whether to build with a debug configuration"""
for arg in sys.argv:
if arg == "--debug":
sys.argv.remove(arg)
return True
if int(os.getenv("NVTE_BUILD_DEBUG", "0")):
return True
return False
# Call once in global scope since this function manipulates the
# command-line arguments. Future calls will use a cached value.
with_debug_build()
def found_cmake() -> bool:
""""Check if valid CMake is available
CMake 3.18 or newer is required.
"""
# Check if CMake is available
try:
_cmake_bin = cmake_bin()
except FileNotFoundError:
return False
# Query CMake for version info
output = subprocess.run(
[_cmake_bin, "--version"],
capture_output=True,
check=True,
universal_newlines=True,
)
match = re.search(r"version\s*([\d.]+)", output.stdout)
version = match.group(1).split('.')
version = tuple(int(v) for v in version)
return version >= (3, 18)
def cmake_bin() -> Path:
"""Get CMake executable
Throws FileNotFoundError if not found.
"""
# Search in CMake Python package
_cmake_bin: Optional[Path] = None
try:
import cmake
except ImportError:
pass
else:
cmake_dir = Path(cmake.__file__).resolve().parent
_cmake_bin = cmake_dir / "data" / "bin" / "cmake"
if not _cmake_bin.is_file():
_cmake_bin = None
# Search in path
if _cmake_bin is None:
_cmake_bin = shutil.which("cmake")
if _cmake_bin is not None:
_cmake_bin = Path(_cmake_bin).resolve()
# Return executable if found
if _cmake_bin is None:
raise FileNotFoundError("Could not find CMake executable")
return _cmake_bin
def found_ninja() -> bool:
""""Check if Ninja is available"""
return shutil.which("ninja") is not None
def found_pybind11() -> bool:
""""Check if pybind11 is available"""
# Check if Python package is installed
try:
import pybind11
except ImportError:
pass
else:
return True
# Check if CMake can find pybind11
if not found_cmake():
return False
try:
subprocess.run(
[
"cmake",
"--find-package",
"-DMODE=EXIST",
"-DNAME=pybind11",
"-DCOMPILER_ID=CXX",
"-DLANGUAGE=CXX",
],
stdout=subprocess.DEVNULL,
stderr=subprocess.DEVNULL,
check=True,
)
except (CalledProcessError, OSError):
pass
else:
return True
return False
def cuda_version() -> Tuple[int, ...]:
"""CUDA Toolkit version as a (major, minor) tuple
Throws FileNotFoundError if NVCC is not found.
"""
# Try finding NVCC
nvcc_bin: Optional[Path] = None
if nvcc_bin is None and os.getenv("CUDA_HOME"):
# Check in CUDA_HOME
cuda_home = Path(os.getenv("CUDA_HOME"))
nvcc_bin = cuda_home / "bin" / "nvcc"
if nvcc_bin is None:
# Check if nvcc is in path
nvcc_bin = shutil.which("nvcc")
if nvcc_bin is not None:
nvcc_bin = Path(nvcc_bin)
if nvcc_bin is None:
# Last-ditch guess in /usr/local/cuda
cuda_home = Path("/usr/local/cuda")
nvcc_bin = cuda_home / "bin" / "nvcc"
if not nvcc_bin.is_file():
raise FileNotFoundError(f"Could not find NVCC at {nvcc_bin}")
# Query NVCC for version info
output = subprocess.run(
[nvcc_bin, "-V"],
capture_output=True,
check=True,
universal_newlines=True,
)
match = re.search(r"release\s*([\d.]+)", output.stdout)
version = match.group(1).split('.')
return tuple(int(v) for v in version)
@lru_cache(maxsize=1)
def with_userbuffers() -> bool:
"""Check if userbuffers support is enabled"""
if int(os.getenv("NVTE_WITH_USERBUFFERS", "0")):
assert os.getenv("MPI_HOME"), \
"MPI_HOME must be set if NVTE_WITH_USERBUFFERS=1"
return True
return False
@lru_cache(maxsize=1)
def frameworks() -> List[str]:
"""DL frameworks to build support for"""
_frameworks: List[str] = []
supported_frameworks = ["pytorch", "jax", "paddle"]
# Check environment variable
if os.getenv("NVTE_FRAMEWORK"):
_frameworks.extend(os.getenv("NVTE_FRAMEWORK").split(","))
# Check command-line arguments
for arg in sys.argv.copy():
if arg.startswith("--framework="):
_frameworks.extend(arg.replace("--framework=", "").split(","))
sys.argv.remove(arg)
# Detect installed frameworks if not explicitly specified
if not _frameworks:
try:
import torch
except ImportError:
pass
else:
_frameworks.append("pytorch")
try:
import jax
except ImportError:
pass
else:
_frameworks.append("jax")
try:
import paddle
except ImportError:
pass
else:
_frameworks.append("paddle")
# Special framework names
if "all" in _frameworks:
_frameworks = supported_frameworks.copy()
if "none" in _frameworks:
_frameworks = []
# Check that frameworks are valid
_frameworks = [framework.lower() for framework in _frameworks]
for framework in _frameworks:
if framework not in supported_frameworks:
raise ValueError(
f"Transformer Engine does not support framework={framework}"
)
return _frameworks
# Call once in global scope since this function manipulates the
# command-line arguments. Future calls will use a cached value.
frameworks()
def setup_requirements() -> Tuple[List[str], List[str], List[str]]:
"""Setup Python dependencies
Returns dependencies for build, runtime, and testing.
"""
# Common requirements
setup_reqs: List[str] = []
install_reqs: List[str] = [
"pydantic",
"importlib-metadata>=1.0; python_version<'3.8'",
]
test_reqs: List[str] = ["pytest"]
def add_unique(l: List[str], vals: Union[str, List[str]]) -> None:
"""Add entry to list if not already included"""
if isinstance(vals, str):
vals = [vals]
for val in vals:
if val not in l:
l.append(val)
# Requirements that may be installed outside of Python
if not found_cmake():
add_unique(setup_reqs, "cmake>=3.18")
if not found_ninja():
add_unique(setup_reqs, "ninja")
# Framework-specific requirements
if "pytorch" in frameworks():
add_unique(install_reqs, ["torch", "flash-attn>=2.0.6,<=2.5.8,!=2.0.9,!=2.1.0"])
add_unique(test_reqs, ["numpy", "onnxruntime", "torchvision"])
if "jax" in frameworks():
if not found_pybind11():
add_unique(setup_reqs, "pybind11")
add_unique(install_reqs, ["jax", "flax>=0.7.1"])
add_unique(test_reqs, ["numpy", "praxis"])
if "paddle" in frameworks():
add_unique(install_reqs, "paddlepaddle-gpu")
add_unique(test_reqs, "numpy")
return setup_reqs, install_reqs, test_reqs
class CMakeExtension(setuptools.Extension):
"""CMake extension module"""
def __init__(
self,
name: str,
cmake_path: Path,
cmake_flags: Optional[List[str]] = None,
) -> None:
super().__init__(name, sources=[]) # No work for base class
self.cmake_path: Path = cmake_path
self.cmake_flags: List[str] = [] if cmake_flags is None else cmake_flags
def _build_cmake(self, build_dir: Path, install_dir: Path) -> None:
# Make sure paths are str
_cmake_bin = str(cmake_bin())
cmake_path = str(self.cmake_path)
build_dir = str(build_dir)
install_dir = str(install_dir)
# CMake configure command
build_type = "Debug" if with_debug_build() else "Release"
configure_command = [
_cmake_bin,
"-S",
cmake_path,
"-B",
build_dir,
f"-DPython_EXECUTABLE={sys.executable}",
f"-DPython_INCLUDE_DIR={sysconfig.get_path('include')}",
f"-DCMAKE_BUILD_TYPE={build_type}",
f"-DCMAKE_INSTALL_PREFIX={install_dir}",
]
configure_command += self.cmake_flags
if found_ninja():
configure_command.append("-GNinja")
try:
import pybind11
except ImportError:
pass
else:
pybind11_dir = Path(pybind11.__file__).resolve().parent
pybind11_dir = pybind11_dir / "share" / "cmake" / "pybind11"
configure_command.append(f"-Dpybind11_DIR={pybind11_dir}")
# CMake build and install commands
build_command = [_cmake_bin, "--build", build_dir]
install_command = [_cmake_bin, "--install", build_dir]
# Run CMake commands
for command in [configure_command, build_command, install_command]:
print(f"Running command {' '.join(command)}")
try:
subprocess.run(command, cwd=build_dir, check=True)
except (CalledProcessError, OSError) as e:
raise RuntimeError(f"Error when running CMake: {e}")
# PyTorch extension modules require special handling
if "pytorch" in frameworks():
from torch.utils.cpp_extension import BuildExtension
elif "paddle" in frameworks():
from paddle.utils.cpp_extension import BuildExtension
else:
from setuptools.command.build_ext import build_ext as BuildExtension
class CMakeBuildExtension(BuildExtension):
"""Setuptools command with support for CMake extension modules"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def run(self) -> None:
# Build CMake extensions
for ext in self.extensions:
if isinstance(ext, CMakeExtension):
print(f"Building CMake extension {ext.name}")
# Set up incremental builds for CMake extensions
setup_dir = Path(__file__).resolve().parent
build_dir = setup_dir / "build" / "cmake"
build_dir.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
package_path = Path(self.get_ext_fullpath(ext.name))
install_dir = package_path.resolve().parent
ext._build_cmake(
build_dir=build_dir,
install_dir=install_dir,
)
# Paddle requires linker search path for libtransformer_engine.so
paddle_ext = None
if "paddle" in frameworks():
for ext in self.extensions:
if "paddle" in ext.name:
ext.library_dirs.append(self.build_lib)
paddle_ext = ext
break
# Build non-CMake extensions as usual
all_extensions = self.extensions
self.extensions = [
ext for ext in self.extensions
if not isinstance(ext, CMakeExtension)
]
super().run()
self.extensions = all_extensions
# Manually write stub file for Paddle extension
if paddle_ext is not None:
# Load libtransformer_engine.so to avoid linker errors
for path in Path(self.build_lib).iterdir():
if path.name.startswith("libtransformer_engine."):
ctypes.CDLL(str(path), mode=ctypes.RTLD_GLOBAL)
# Figure out stub file path
module_name = paddle_ext.name
assert module_name.endswith("_pd_"), \
"Expected Paddle extension module to end with '_pd_'"
stub_name = module_name[:-4] # remove '_pd_'
stub_path = os.path.join(self.build_lib, stub_name + ".py")
# Figure out library name
# Note: This library doesn't actually exist. Paddle
# internally reinserts the '_pd_' suffix.
so_path = self.get_ext_fullpath(module_name)
_, so_ext = os.path.splitext(so_path)
lib_name = stub_name + so_ext
# Write stub file
print(f"Writing Paddle stub for {lib_name} into file {stub_path}")
from paddle.utils.cpp_extension.extension_utils import custom_write_stub
custom_write_stub(lib_name, stub_path)
def setup_common_extension() -> CMakeExtension:
"""Setup CMake extension for common library
Also builds JAX or userbuffers support if needed.
"""
cmake_flags = []
if "jax" in frameworks():
cmake_flags.append("-DENABLE_JAX=ON")
if with_userbuffers():
cmake_flags.append("-DNVTE_WITH_USERBUFFERS=ON")
return CMakeExtension(
name="transformer_engine",
cmake_path=root_path / "transformer_engine",
cmake_flags=cmake_flags,
)
def _all_files_in_dir(path):
return list(path.iterdir())
def setup_pytorch_extension() -> setuptools.Extension:
"""Setup CUDA extension for PyTorch support"""
# Source files
src_dir = root_path / "transformer_engine" / "pytorch" / "csrc"
extensions_dir = src_dir / "extensions"
sources = [
src_dir / "common.cu",
src_dir / "ts_fp8_op.cpp",
# We need to compile system.cpp because the pytorch extension uses
# transformer_engine::getenv. This is a workaround to avoid direct
# linking with libtransformer_engine.so, as the pre-built PyTorch
# wheel from conda or PyPI was not built with CXX11_ABI, and will
# cause undefined symbol issues.
root_path / "transformer_engine" / "common" / "util" / "system.cpp",
] + \
_all_files_in_dir(extensions_dir)
# Header files
include_dirs = [
root_path / "transformer_engine" / "common" / "include",
root_path / "transformer_engine" / "pytorch" / "csrc",
root_path / "transformer_engine",
root_path / "3rdparty" / "cudnn-frontend" / "include",
]
# Compiler flags
cxx_flags = ["-O3"]
nvcc_flags = [
"-O3",
"-gencode",
"arch=compute_70,code=sm_70",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
]
# Version-dependent CUDA options
try:
version = cuda_version()
except FileNotFoundError:
print("Could not determine CUDA Toolkit version")
else:
if version >= (11, 2):
nvcc_flags.extend(["--threads", "4"])
if version >= (11, 0):
nvcc_flags.extend(["-gencode", "arch=compute_80,code=sm_80"])
if version >= (11, 8):
nvcc_flags.extend(["-gencode", "arch=compute_90,code=sm_90"])
# userbuffers support
if with_userbuffers():
if os.getenv("MPI_HOME"):
mpi_home = Path(os.getenv("MPI_HOME"))
include_dirs.append(mpi_home / "include")
cxx_flags.append("-DNVTE_WITH_USERBUFFERS")
nvcc_flags.append("-DNVTE_WITH_USERBUFFERS")
# Construct PyTorch CUDA extension
sources = [str(path) for path in sources]
include_dirs = [str(path) for path in include_dirs]
from torch.utils.cpp_extension import CUDAExtension
return CUDAExtension(
name="transformer_engine_extensions",
sources=sources,
include_dirs=include_dirs,
# libraries=["transformer_engine"], ### TODO (tmoon) Debug linker errors
extra_compile_args={
"cxx": cxx_flags,
"nvcc": nvcc_flags,
},
)
def setup_paddle_extension() -> setuptools.Extension:
"""Setup CUDA extension for Paddle support"""
# Source files
src_dir = root_path / "transformer_engine" / "paddle" / "csrc"
sources = [
src_dir / "extensions.cu",
src_dir / "common.cpp",
src_dir / "custom_ops.cu",
]
# Header files
include_dirs = [
root_path / "transformer_engine" / "common" / "include",
root_path / "transformer_engine" / "paddle" / "csrc",
root_path / "transformer_engine",
]
# Compiler flags
cxx_flags = ["-O3"]
nvcc_flags = [
"-O3",
"-gencode",
"arch=compute_70,code=sm_70",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
]
# Version-dependent CUDA options
try:
version = cuda_version()
except FileNotFoundError:
print("Could not determine CUDA Toolkit version")
else:
if version >= (11, 2):
nvcc_flags.extend(["--threads", "4"])
if version >= (11, 0):
nvcc_flags.extend(["-gencode", "arch=compute_80,code=sm_80"])
if version >= (11, 8):
nvcc_flags.extend(["-gencode", "arch=compute_90,code=sm_90"])
# Construct Paddle CUDA extension
sources = [str(path) for path in sources]
include_dirs = [str(path) for path in include_dirs]
from paddle.utils.cpp_extension import CUDAExtension
ext = CUDAExtension(
sources=sources,
include_dirs=include_dirs,
libraries=["transformer_engine"],
extra_compile_args={
"cxx": cxx_flags,
"nvcc": nvcc_flags,
},
)
ext.name = "transformer_engine_paddle_pd_"
return ext
def main():
# Submodules to install
packages = setuptools.find_packages(
include=["transformer_engine", "transformer_engine.*"],
)
# Dependencies
setup_requires, install_requires, test_requires = setup_requirements()
# Extensions
ext_modules = [setup_common_extension()]
if "pytorch" in frameworks():
ext_modules.append(setup_pytorch_extension())
if "paddle" in frameworks():
ext_modules.append(setup_paddle_extension())
# Configure package
setuptools.setup(
name="transformer_engine",
version=te_version(),
packages=packages,
description="Transformer acceleration library",
ext_modules=ext_modules,
cmdclass={"build_ext": CMakeBuildExtension},
setup_requires=setup_requires,
install_requires=install_requires,
extras_require={"test": test_requires},
license_files=("LICENSE",),
)
if __name__ == "__main__":
main()