-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest_sagan.py
64 lines (57 loc) · 2.42 KB
/
test_sagan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import argparse
import pandas as pd
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms as T
from pathgan.data import MPRDataset
from pathgan.models import SAGenerator
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog = 'top', description='Testing SAGAN (from original paper)')
parser.add_argument('--checkpoint_path', default=None, help='Load directory to continue training (default: "None")')
parser.add_argument('--batch_size', type=int, default=1, help='"Batch size" with which GAN will be trained (default: 1)')
parser.add_argument('--save_dir', default='results/sagan', help='Save directory (default: "results/sagan")')
parser.add_argument('--device', type=str, default='cuda:0', help='Device (default: "cuda:0")')
args = parser.parse_args()
device = torch.device(args.device if torch.cuda.is_available() else 'cpu')
transform = T.Compose([
T.ToTensor(),
T.Normalize(
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5),
),
])
df = pd.read_csv('dataset/test.csv')
dataset = MPRDataset(
map_dir = 'dataset/maps',
point_dir = 'dataset/tasks',
roi_dir = 'dataset/tasks',
csv_file = df,
transform = transform,
)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
generator = SAGenerator()
print('=========== Loading weights for Generator ===========')
generator.load_state_dict(torch.load(args.checkpoint_path, map_location="cpu"))
generator = generator.to(device)
generator = generator.eval()
print('============== Testing Started ==============')
os.makedirs(args.save_dir, exist_ok=True)
for i, (maps, points, rois) in enumerate(tqdm(dataloader)):
maps = maps.to(device)
points = points.to(device)
b, _, h, w = maps.size()
noise = torch.rand(b, 1, h, w)
noise = noise.to(device)
with torch.no_grad():
pred_rois = generator(maps, points, noise).detach().cpu()[0]
pred_rois = pred_rois.permute(1,2,0).numpy()
pred_rois = (pred_rois > 0).astype(np.uint8) * 255
roi_img = Image.fromarray(pred_rois)
roi_path = os.path.join(args.save_dir, f"roi_{i}.png")
roi_img.save(roi_path)
print('============== Testing Finished! ==============')