-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDropletSeparation.py
397 lines (352 loc) · 17.4 KB
/
DropletSeparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import cv2
import numpy as np
import os
# import scipy as sp
import pandas as pd
# import scipy.signal
import matplotlib as mpl
import matplotlib.pyplot as plt
# import sys
import argparse
from skimage import morphology
# from skimage.feature import canny
from skimage import segmentation
from scipy import ndimage as ndi
from skimage.filters import sobel, gaussian
# from skimage.filters import median
# from skimage.measure import find_contours
# from skimage import data, img_as_float
# from skimage import exposure
# import time
import yaml
from grid import Grid, ImageGrid
from image import Image
from config import load_config
mpl.use("Qt5Cairo")
mpl.rcParams["keymap.back"] = ['backspace']
mpl.rcParams["keymap.forward"] = []
mpl.rcParams["keymap.save"] = ['ctrl+s'] # Remove s here
mpl.rcParams["keymap.home"] = ['h', 'home']
try:
mpl.rcParams["keymap.all_axes"] = ['ctrl+a'] # deprecated
except KeyError:
pass
class DropletSeparation:
def __init__(self, image: Image, grid: Grid):
self.original_image = image
self.original_grid = grid
gray_norm = image.convert("GRAY").astype("float").rescale_intensity().data
self.grid = ImageGrid(gray_norm.copy(), *grid.make_grid())
self.grid_show = ImageGrid(image.data, *grid.make_grid())
self.grid_edges = ImageGrid(gray_norm.copy(), *grid.make_grid())
self.grid_segments = ImageGrid(gray_norm.copy(), *grid.make_grid())
self.grid_edges_dilated = ImageGrid(gray_norm.copy(), *grid.make_grid())
# Preview image
self.grid_preview = ImageGrid(image.data, *grid.make_grid()).resize()
self.grid_edges_dilated_preview = ImageGrid(gray_norm.copy(), *grid.make_grid()).resize()
self.grid_edges_dilated_preview.image = np.array(self.grid_edges_dilated_preview.image, dtype="bool")
self.grid_edges_dilated.image = np.array(self.grid_edges_dilated.image, dtype="bool")
# Empty settings for algorithm. Needs config file!
self.mode_param_default = np.zeros((1, 1, 7))
self.mode_params_step = np.zeros((1, 1, 7))
self.mode_param_label = {i: "Unknown" for i in range(1, self.mode_param_default.shape[-1])}
self.mode_params = np.zeros(list(self.grid.grid_shape) + [self.mode_param_default.shape[-1]])
self.mode_params[:, :] = self.mode_param_default
def set_config(self, config):
print("Apply settings from config file.")
self.mode_param_default = np.expand_dims(np.expand_dims(np.array(config["mode_param_default"]), axis=0), axis=0)
self.mode_params_step = np.expand_dims(np.expand_dims(np.array(config["mode_params_step"]), axis=0), axis=0)
self.mode_param_label = dict(config["mode_param_label"])
self.mode_params = np.zeros(list(self.grid.grid_shape) + [self.mode_param_default.shape[-1]])
self.mode_params[:, :] = self.mode_param_default
@staticmethod
def find_max_class(labeled_array: np.ndarray):
labels, counts = np.unique(labeled_array, return_counts=True)
labels_0 = labels[labels != 0]
counts_0 = counts[labels != 0]
if len(labels_0) == 0:
return -1
return labels_0[np.argmax(counts_0)]
@staticmethod
def find_binary_step(arr):
ls = np.logical_or(arr[:-1, :] == arr[1:, :] - 1, arr[:-1, :] == arr[1:, :] + 1)
rs = np.logical_or(arr[:, :-1] == arr[:, 1:] - 1, arr[:, :-1] == arr[:, 1:] + 1)
out = np.zeros_like(arr, dtype="uint8")
out[:-1, :] = np.logical_or(out[:-1, :], ls)
out[1:, :] = np.logical_or(out[1:, :], ls)
out[:, :-1] = np.logical_or(out[:, :-1], rs)
out[:, 1:] = np.logical_or(out[:, 1:], rs)
return out
def segmentation_watershed(self, pic: np.ndarray, min_cut: float = 0.3, max_cut: float = 0.5, sigma: float = 5,
min_drop: int = 64, median_kernel_size: int = 3, min_intensity: float = 0.1):
# print(min_cut, max_cut, sigma, min_drop, median_kernel_size, min_intensity)
# restrict min/max marker
min_cut = max(min_cut, 0.01) # must be larger than 0
min_cut = min(min_cut, 0.99)
max_cut = min(max_cut, 1)
pic_smooth = cv2.medianBlur(np.array(pic * 255, dtype="uint8"), ksize=max(int(median_kernel_size), 1)) / 255
pic_smooth = gaussian(pic_smooth, sigma=max(sigma, 0))
pic_preproc = (pic_smooth - np.amin(pic_smooth)) / np.amax(pic_smooth)
elevation_map = sobel(pic_preproc)
markers = np.zeros_like(pic)
markers[pic_preproc < min_cut] = 1
markers[pic_preproc >= max_cut] = 2
segmentation_drops = segmentation.watershed(elevation_map, markers) == 2
drops_cleaned = morphology.remove_small_objects(segmentation_drops, min_drop)
labeled_drops, _ = ndi.label(drops_cleaned)
max_cl = self.find_max_class(labeled_drops)
max_drop = labeled_drops == max_cl
if np.max(pic) < min_intensity:
max_drop = np.zeros_like(max_drop)
edges = self.find_binary_step(max_drop)
max_edge = np.logical_and(edges, max_drop)
return max_drop, max_edge
@staticmethod
def load_yaml_file(file_name):
with open(file_name, 'r') as stream:
out = yaml.safe_load(stream)
return out
def find_segmentation(self):
for i in range(self.grid.grid_shape[0]):
for j in range(self.grid.grid_shape[1]):
self.find_segmentation_index(i, j)
def find_segmentation_index(self, i, j):
max_drop, max_edge = self.segmentation_watershed(self.grid[i, j], *self.mode_params[i, j, 1:])
self.grid_edges[i, j] = max_edge
self.grid_segments[i, j] = max_drop
max_edge_dilated = np.array(
cv2.dilate(np.array(max_edge, dtype="float32"), np.ones((3, 3))), dtype="bool")
self.grid_edges_dilated[i, j] = max_edge_dilated
reduced_shape = self.grid_edges_dilated_preview[i, j].shape
reduced = cv2.resize(np.array(max_edge_dilated, dtype="float32"), (reduced_shape[1], reduced_shape[0]))
self.grid_edges_dilated_preview[i, j] = np.array(reduced, dtype="bool")
def export(self, directory_path: str):
grid_shape = self.grid.grid_shape
pixel_size = np.zeros(grid_shape)
pixel_int = np.zeros(grid_shape)
for i in range(grid_shape[0]):
for j in range(grid_shape[1]):
segment_ij = self.grid_segments[i, j]
pixel_size[i, j] = np.sum(segment_ij)
pixel_int[i, j] = np.sum(self.grid[i, j][segment_ij.astype("bool")])
df = pd.DataFrame(np.transpose(pixel_size))
df.to_excel(os.path.join(directory_path, "DropletsSize.xlsx"))
df = pd.DataFrame(np.transpose(pixel_int))
df.to_excel(os.path.join(directory_path, "DropletsIntensity.xlsx"))
self.grid_edges.save(directory_path, "GridEdges.jpg")
self.grid_segments.save(directory_path, "GridSegments.jpg")
self.grid_show.save(directory_path, "GridImage.jpg")
np.save(os.path.join(directory_path, "DropletsParameter.npy"), self.mode_params)
if os.path.exists(os.path.join(directory_path, "ScaleBar.yaml")):
scale_bar_config = self.load_yaml_file(os.path.join(directory_path, "ScaleBar.yaml"))
scale = scale_bar_config["length"]
if scale is not None:
print("Using Scale Bar: %s" % scale)
df2 = pd.DataFrame(np.transpose(pixel_size) / scale / scale)
df2.to_excel(os.path.join(directory_path, "DropletsSizeScaled.xlsx"))
else:
print("Could not read scale bar")
class GUI:
brightness_increase = 10
def __init__(self, droplet: DropletSeparation):
self.droplet = droplet
self.image = droplet.grid_show
self.image_preview = droplet.grid_preview
self.fig = None
self.ax = None
self.image_in_fig = None
self.fig_x_lines = []
self.fig_y_lines = []
self.y_label_text = ""
self.log_info = ["> Event log:\n"]
self.log_text = None
self.bright = 0
self.mode_preview = False
self.mode_param_selection = 1
self.mode_param_label = droplet.mode_param_label
self.debug = False
def add_logg(self, info):
max_len_log = 40
if len(self.log_info) > max_len_log:
self.log_info = self.log_info[-max_len_log:]
self.log_info.append(info + "\n")
def _draw_segmentation(self, image, edges, preview=False, flush=True):
if self.mode_preview != preview:
# Reset ax lim also
self.ax.set_xlim((0, image.shape[1]))
self.ax.set_ylim((image.shape[0], 0))
self.mode_preview = preview
title_preview = "PREVIEW, " if preview else ""
self.ax.set_title(
title_preview + "Parameter: " + self.mode_param_label[self.mode_param_selection])
image_array = image.image.copy()
image_array = Image.adjust_brightness(image_array, self.bright)
# cmap = plt.get_cmap('hot')
# img = cmap(img)
if self.image_in_fig is not None:
self.image_in_fig.remove()
image_array[edges.image] = np.array([[0, 255, 0]])
self.image_in_fig = self.ax.imshow(image_array, vmax=self.bright)
for i, lxy in enumerate(self.fig_y_lines):
lxy.set_ydata((image.grid_y_pos[i], image.grid_y_pos[i]))
for i, lxy in enumerate(self.fig_x_lines):
lxy.set_xdata((image.grid_x_pos[i], image.grid_x_pos[i]))
self.log_text.set_text("".join(self.log_info))
# self.log_text.set_position((self.rgb.shape[1]*1.02, self.rgb.shape[0]))
self.log_text.set_position((1.02, 0))
if flush:
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def draw_segmentation_preview(self, flush=True):
self._draw_segmentation(self.image_preview, self.droplet.grid_edges_dilated_preview, preview=True, flush=flush)
def draw_segmentation(self, flush=True):
self._draw_segmentation(self.image, self.droplet.grid_edges_dilated, preview=False, flush=flush)
@staticmethod
def _find_grid_segment(image, event):
diffx = -image.grid_x_pos + event.xdata
diffy = -image.grid_y_pos + event.ydata
x_idx = np.argmin(np.where(diffx > 0, diffx, np.inf))
y_idx = np.argmin(np.where(diffy > 0, diffy, np.inf))
return x_idx, y_idx
def key_press_event(self, event):
# print('you pressed', event.key, "at", event.xdata, event.ydata)
if event.key == "enter":
print("Accept current grid segmentation...")
self.fig.canvas.stop_event_loop()
elif event.key == "r":
self.draw_segmentation()
elif event.key == "down":
ms = self.mode_param_selection
if event.inaxes and event.xdata is not None and event.ydata is not None:
if self.mode_preview:
i, j = self._find_grid_segment(self.image_preview, event)
else:
i, j = self._find_grid_segment(self.image, event)
self.droplet.mode_params[i, j, ms] -= self.droplet.mode_params_step[0, 0, ms]
self.add_logg(
"> " + self.mode_param_label[ms] + " for ({0}, {1}) to {2}".format(
i, j, self.droplet.mode_params[i, j, ms]))
self.droplet.find_segmentation_index(i, j)
self.draw_segmentation_preview()
else:
self.droplet.mode_params[:, :, ms] -= self.droplet.mode_params_step[:, :, ms]
self.add_logg("> All " + self.mode_param_label[ms] + " by -{0}".format(
self.droplet.mode_params_step[0, 0, ms]))
self.draw_segmentation_preview()
elif event.key == "up":
ms = self.mode_param_selection
if event.inaxes and event.xdata is not None and event.ydata is not None:
if self.mode_preview:
i, j = self._find_grid_segment(self.image_preview, event)
else:
i, j = self._find_grid_segment(self.image, event)
self.droplet.mode_params[i, j, ms] += self.droplet.mode_params_step[0, 0, ms]
self.add_logg(
"> " + self.mode_param_label[ms] + " for ({0}, {1}) to {2}".format(
i, j, self.droplet.mode_params[i, j, ms]))
self.droplet.find_segmentation_index(i, j)
self.draw_segmentation_preview()
else:
self.droplet.mode_params[:, :, ms] += self.droplet.mode_params_step[:, :, ms]
self.droplet.find_segmentation()
self.add_logg("> All" + self.mode_param_label[ms] + "by +{0}".format(
self.droplet.mode_params_step[0, 0, ms]))
self.draw_segmentation_preview()
elif event.key == "1":
self.mode_param_selection = 1
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "2":
self.mode_param_selection = 2
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "3":
self.mode_param_selection = 3
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "4":
self.mode_param_selection = 4
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "5":
self.mode_param_selection = 5
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "6":
self.mode_param_selection = 6
self.add_logg("> Switch parameter to {0}".format(self.mode_param_label[self.mode_param_selection]))
self.draw_segmentation_preview()
elif event.key == "-":
self.bright -= self.brightness_increase
self.add_logg("> Change brightness to {}".format(self.bright))
self.draw_segmentation_preview()
elif event.key == "+":
self.bright += self.brightness_increase
self.add_logg("> Change brightness to {}".format(self.bright))
self.draw_segmentation_preview()
elif event.key == "m":
self.add_logg("> Average Parameter Stats:")
for key, item in self.droplet.mode_param_label.items():
self.add_logg("> {0}: <{1}>".format(item, np.mean(self.droplet.mode_params[:, :, int(key)])))
self.draw_segmentation_preview()
def button_press_event(self, event):
pass
def run(self, window_title: str = "Droplet Segmentation"):
plt.ion()
fig, ax = plt.subplots()
self.fig = fig
self.ax = ax
self.y_label_text = "".join(["Press: 1,2, etc. to select paramter.\n"
"Change (move Mouse): Press 'up', 'down' for change parameter.\n",
"Press: 'r' to render at max resolution.\n",
"Press: '+', '-' to change brightness.\n",
"Press: 'm' to get current mean settings."
])
plt.xlim([0, self.image.shape[1]])
plt.ylim([self.image.shape[0], 0])
plt.ylabel(self.y_label_text, rotation='horizontal', ha='right')
self.log_text = plt.text(1.02, 0, "".join(self.log_info), backgroundcolor='w', transform=ax.transAxes)
for i in self.image_preview.grid_y_pos:
lx = self.ax.axhline(y=i, color='r', linestyle='-', lw=0.5)
self.fig_y_lines.append(lx)
for j in self.image_preview.grid_x_pos:
ly = self.ax.axvline(x=j, color='r', linestyle='-', lw=0.5)
self.fig_x_lines.append(ly)
self.draw_segmentation_preview(flush=False)
fig_manager = plt.get_current_fig_manager()
fig_manager.window.showMaximized()
plt.show()
fig_manager.set_window_title(window_title)
fig.canvas.mpl_connect('key_press_event', self.key_press_event)
fig.canvas.mpl_connect('button_press_event', self.button_press_event)
fig.canvas.start_event_loop()
fig.clear()
plt.close(fig)
plt.close("all")
if __name__ == "__main__":
# Input arguments from command line.
parser = argparse.ArgumentParser(description='Run DropletSeparation.')
parser.add_argument("--file", required=True, help="Input filepath of image.")
args = vars(parser.parse_args())
print("Input of argparse:", args)
# File and path information
arg_file_path = args["file"]
# arg_file_path = "output/HG2A_30s/HG2A_30s_select.jpg"
arg_result_path = os.path.dirname(arg_file_path)
arg_file_name = os.path.basename(arg_file_path)
conf = load_config("configs/DropletSeparation.yaml")
# Load Image
img = Image()
img.load(arg_file_path)
# Make Grid
grd = Grid()
grd.load(arg_result_path)
# Image Grid
seg = DropletSeparation(img, grd)
seg.set_config(conf)
seg.find_segmentation()
# Propose Grid
gi = GUI(seg)
gi.run(str(arg_file_name))
# Export results
seg.export(arg_result_path)