-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsolver.py
78 lines (58 loc) · 2.72 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import logging
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import LambdaLR, StepLR
class LambdaStepLR(LambdaLR):
def __init__(self, optimizer, lr_lambda, last_step=-1):
super(LambdaStepLR, self).__init__(optimizer, lr_lambda, last_step)
@property
def last_step(self):
"""Use last_epoch for the step counter"""
return self.last_epoch
@last_step.setter
def last_step(self, v):
self.last_epoch = v
class PolyLR(LambdaStepLR):
"""DeepLab learning rate policy"""
def __init__(self, optimizer, max_iter, power=0.9, last_step=-1):
super(PolyLR, self).__init__(optimizer, lambda s: (1 - s / (max_iter + 1))**power, last_step)
class SquaredLR(LambdaStepLR):
""" Used for SGD Lars"""
def __init__(self, optimizer, max_iter, last_step=-1):
super(SquaredLR, self).__init__(optimizer, lambda s: (1 - s / (max_iter + 1))**2, last_step)
class ExpLR(LambdaStepLR):
def __init__(self, optimizer, step_size, gamma=0.9, last_step=-1):
# (0.9 ** 21.854) = 0.1, (0.95 ** 44.8906) = 0.1
# To get 0.1 every N using gamma 0.9, N * log(0.9)/log(0.1) = 0.04575749 N
# To get 0.1 every N using gamma g, g ** N = 0.1 -> N * log(g) = log(0.1) -> g = np.exp(log(0.1) / N)
super(ExpLR, self).__init__(optimizer, lambda s: gamma**(s / step_size), last_step)
def initialize_optimizer(params, config):
assert config.optimizer in ['SGD', 'Adagrad', 'Adam', 'RMSProp', 'Rprop', 'SGDLars']
if config.optimizer == 'SGD':
return SGD(
params,
lr=config.lr,
momentum=config.sgd_momentum,
dampening=config.sgd_dampening,
weight_decay=config.weight_decay)
elif config.optimizer == 'Adam':
return Adam(
params,
lr=config.lr,
betas=(config.adam_beta1, config.adam_beta2),
weight_decay=config.weight_decay)
else:
logging.error('Optimizer type not supported')
raise ValueError('Optimizer type not supported')
def initialize_scheduler(optimizer, config, last_step=-1):
if config.scheduler == 'StepLR':
return StepLR(
optimizer, step_size=config.step_size, gamma=config.step_gamma, last_epoch=last_step)
elif config.scheduler == 'PolyLR':
return PolyLR(optimizer, max_iter=config.max_iter, power=config.poly_power, last_step=last_step)
elif config.scheduler == 'SquaredLR':
return SquaredLR(optimizer, max_iter=config.max_iter, last_step=last_step)
elif config.scheduler == 'ExpLR':
return ExpLR(
optimizer, step_size=config.exp_step_size, gamma=config.exp_gamma, last_step=last_step)
else:
logging.error('Scheduler not supported')