-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathROC.py
72 lines (57 loc) · 2.19 KB
/
ROC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from numpy import loadtxt
from keras.models import load_model
from sklearn.model_selection import train_test_split
import matplotlib
import h5py
from numpy import expand_dims
matplotlib.use('Agg')
import sys, os, numpy
import tensorflow
#Establish the input and output data for each dataset, expanding dimensions for compatability with Conv1D layer input
#First Dataset
with h5py.File('/data/t3home000/aidandc/testingDataver3HH.h5', 'r') as hf:
dataset = hf["Testing Data"][:]
A = dataset[:,0:len(dataset[0])-1]
b = dataset[:,len(dataset[0])-1]
A = expand_dims(A,axis=3)
#Second Dataset
with h5py.File('/data/t3home000/aidandc/testingDataHHThreeV.h5', 'r') as hf:
dataset1 = hf["Testing Data"][:]
A1 = dataset1[:,0:len(dataset1[0])-1]
b1 = dataset1[:,len(dataset1[0])-1]
A1 = expand_dims(A1,axis=3)
#Third Dataset
with h5py.File('/data/t3home000/aidandc/testingDataHHFiveV.h5', 'r') as hf:
dataset2 = hf["Testing Data"][:]
A2 = dataset2[:,0:len(dataset2[0])-1]
b2 = dataset2[:,len(dataset2[0])-1]
A2 = expand_dims(A2,axis=3)
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
import matplotlib.pyplot as plt
#Create plot for ROC
plt.figure(1)
plt.plot([0,1],[0,1],'k--')
#Load in respective model for the datasets
model1 = load_model('modelOne.h5')
model2 = load_model('modelTwo.h5')
model3 = load_model('modelThree.h5')
#Creating ROC curves based on model predictions for each dataset
Ab_pred_keras = model1.predict(A).ravel()
fpr_Ab, tpr_Ab, thresholds_Ab = roc_curve(b,Ab_pred_keras)
auc_Ab = auc(fpr_Ab,tpr_Ab)
plt.plot(fpr_Ab,tpr_Ab,label='dZ+dXY 1 Vertex (area={:.3f})'.format(auc_Ab))
Bc_pred_keras = model2.predict(A1).ravel()
fpr_Bc, tpr_Bc, thresholds_Bc = roc_curve(b1,Bc_pred_keras)
auc_Bc = auc(fpr_Bc, tpr_Bc)
plt.plot(fpr_Bc,tpr_Bc,label='dZ+dXY 3 Vertex (area={:.3f})'.format(auc_Bc))
Cd_pred_keras = model3.predict(A2).ravel()
fpr_Cd, tpr_Cd, thresholds_Cd = roc_curve(b2,Cd_pred_keras)
auc_Cd = auc(fpr_Cd, tpr_Cd)
plt.plot(fpr_Cd, tpr_Cd, label='dZ+dXY 5 Vertex (area={:.3f})'.format(auc_Cd))
#Establish labels and save image
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('L1BTag Model ROC Curves')
plt.legend(loc='best')
plt.savefig('ROCCurves.png')