-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.py
64 lines (56 loc) · 2.3 KB
/
NeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
from copy import deepcopy
class NeuralNetwork:
'''
Neural Network Skeleton
Methods:
- forward pass:
- calls the forward method of each layer in the architecture
- returns the loss value from the loss layer
- backward pass:
- calls the backward method of each layer in the architecture
- append_layer:
- appends a layer to the architecture
- train:
- trains the network for a number of iterations
- test:
- tests the network on a given input_tensor
'''
def __init__(self, optimizer, weights_initializer, bias_initializer) -> None:
self.optimizer = optimizer
self.loss: list[float] = []
self.layers: list = []
self.data_layer = None
self.loss_layer = None
self.weights_initializer = weights_initializer
self.bias_initializer = bias_initializer
def forward(self) -> np.ndarray:
input_tensor, self.label_tensor = self.data_layer.next()
regularizer_loss = 0
for layer in self.layers:
layer.testing_phase = False
input_tensor = layer.forward(input_tensor)
loss = self.loss_layer.forward(input_tensor, self.label_tensor)
if self.optimizer.regularizer is not None:
regularizer_loss = self.optimizer.regularizer.norm(loss)
return loss + regularizer_loss
def backward(self) -> None:
label_tensor = deepcopy(self.label_tensor)
error_tensor = self.loss_layer.backward(label_tensor)
for layer in reversed(self.layers):
error_tensor = layer.backward(error_tensor)
def append_layer(self, layer: object) -> None:
if layer.trainable:
layer.optimizer = deepcopy(self.optimizer)
layer.initialize(self.weights_initializer, self.bias_initializer)
self.layers.append(layer)
def train(self, iterations: int) -> None:
for _ in range(iterations):
loss = self.forward()
self.loss.append(loss)
self.backward()
def test(self, input_tensor) -> np.ndarray:
for layer in self.layers:
layer.testing_phase = True
input_tensor = layer.forward(input_tensor)
return input_tensor