diff --git a/CHANGELOG.md b/CHANGELOG.md index 2959d3d6ce..055fbf6250 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -123,6 +123,10 @@ New modules * `Data.Sign.Show` to show a sign +* Added a new domain theory section to the library under `Relation.Binary.Domain.*`: + - Introduced new modules and bundles for domain theory, including `DirectedCompletePartialOrder`, `Lub`, and `ScottContinuous`. + - All files for domain theory are now available in `src/Relation/Binary/Domain/`. + Additions to existing modules ----------------------------- diff --git a/src/Relation/Binary/Domain.agda b/src/Relation/Binary/Domain.agda new file mode 100644 index 0000000000..812e74a601 --- /dev/null +++ b/src/Relation/Binary/Domain.agda @@ -0,0 +1,16 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Order-theoretic Domains +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain where + +------------------------------------------------------------------------ +-- Re-export various components of the Domain hierarchy + +open import Relation.Binary.Domain.Definitions public +open import Relation.Binary.Domain.Structures public +open import Relation.Binary.Domain.Bundles public diff --git a/src/Relation/Binary/Domain/Bundles.agda b/src/Relation/Binary/Domain/Bundles.agda new file mode 100644 index 0000000000..d4557b000e --- /dev/null +++ b/src/Relation/Binary/Domain/Bundles.agda @@ -0,0 +1,63 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Bundles for domain theory +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Bundles where + +open import Level using (Level; _⊔_; suc) +open import Relation.Binary.Bundles using (Poset) +open import Relation.Binary.Domain.Structures +open import Relation.Binary.Domain.Definitions + +private + variable + o ℓ e o' ℓ' e' ℓ₂ : Level + Ix A B : Set o + +------------------------------------------------------------------------ +-- Directed Complete Partial Orders +------------------------------------------------------------------------ + +record DirectedFamily {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} (f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where + field + isDirectedFamily : IsDirectedFamily P f + + open IsDirectedFamily isDirectedFamily public + +record DirectedCompletePartialOrder (c ℓ₁ ℓ₂ : Level) : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where + field + poset : Poset c ℓ₁ ℓ₂ + isDirectedCompletePartialOrder : IsDirectedCompletePartialOrder poset + + open Poset poset public + open IsDirectedCompletePartialOrder isDirectedCompletePartialOrder public + +------------------------------------------------------------------------ +-- Scott-continuous functions +------------------------------------------------------------------------ + +record ScottContinuous + {c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ : Level} + (P : Poset c₁ ℓ₁₁ ℓ₁₂) + (Q : Poset c₂ ℓ₂₁ ℓ₂₂) + : Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) where + field + f : Poset.Carrier P → Poset.Carrier Q + isScottContinuous : IsScottContinuous P Q f + + open IsScottContinuous isScottContinuous public + +------------------------------------------------------------------------ +-- Lubs +------------------------------------------------------------------------ + +record Lub {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} + (f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where + open Poset P + field + lub : Carrier + isLub : IsLub P f lub diff --git a/src/Relation/Binary/Domain/Definitions.agda b/src/Relation/Binary/Domain/Definitions.agda new file mode 100644 index 0000000000..a3322e87e0 --- /dev/null +++ b/src/Relation/Binary/Domain/Definitions.agda @@ -0,0 +1,38 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Definitions for domain theory +------------------------------------------------------------------------ + + + + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Definitions where + +open import Data.Product using (∃-syntax; _×_; _,_) +open import Level using (Level; _⊔_) +open import Relation.Binary.Core using (Rel) + +private + variable + a b ℓ : Level + A B : Set a + +------------------------------------------------------------------------ +-- Directed families +------------------------------------------------------------------------ + +-- IsSemidirectedFamily : (P : Poset c ℓ₁ ℓ₂) → ∀ {Ix : Set c} → (s : Ix → Poset.Carrier P) → Set _ +-- IsSemidirectedFamily P {Ix} s = ∀ i j → ∃[ k ] (Poset._≤_ P (s i) (s k) × Poset._≤_ P (s j) (s k)) + +semidirected : {A : Set a} → Rel A ℓ → (B : Set b) → (B → A) → Set _ +semidirected _≤_ B f = ∀ i j → ∃[ k ] (f i ≤ f k × f j ≤ f k) + +------------------------------------------------------------------------ +-- Least upper bounds +------------------------------------------------------------------------ + +leastupperbound : {A : Set a} → Rel A ℓ → (B : Set b) → (B → A) → A → Set _ +leastupperbound _≤_ B f lub = (∀ i → f i ≤ lub) × (∀ y → (∀ i → f i ≤ y) → lub ≤ y) diff --git a/src/Relation/Binary/Domain/Structures.agda b/src/Relation/Binary/Domain/Structures.agda new file mode 100644 index 0000000000..3bea876cc2 --- /dev/null +++ b/src/Relation/Binary/Domain/Structures.agda @@ -0,0 +1,79 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Structures for domain theory +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Structures where + +open import Data.Product using (_×_; _,_; proj₁; proj₂) +open import Function using (_∘_) +open import Level using (Level; _⊔_; suc) +open import Relation.Binary.Bundles using (Poset) +open import Relation.Binary.Domain.Definitions + +private variable + a b c ℓ ℓ₁ ℓ₂ : Level + A B : Set a + + +module _ {c ℓ₁ ℓ₂ : Level} (P : Poset c ℓ₁ ℓ₂) where + open Poset P + + record IsLub {b : Level} {B : Set b} (f : B → Carrier) + (lub : Carrier) : Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where + field + isLeastUpperBound : leastupperbound _≤_ B f lub + + isUpperBound : ∀ i → f i ≤ lub + isUpperBound = proj₁ isLeastUpperBound + + isLeast : ∀ y → (∀ i → f i ≤ y) → lub ≤ y + isLeast = proj₂ isLeastUpperBound + + record IsDirectedFamily {b : Level} {B : Set b} (f : B → Carrier) + : Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where + no-eta-equality + field + elt : B + isSemidirected : semidirected _≤_ B f + + record IsDirectedCompletePartialOrder : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where + field + ⋁ : ∀ {B : Set c} + → (f : B → Carrier) + → IsDirectedFamily f + → Carrier + ⋁-isLub : ∀ {B : Set c} + → (f : B → Carrier) + → (dir : IsDirectedFamily f) + → IsLub f (⋁ f dir) + + module _ {B : Set c} {f : B → Carrier} {dir : IsDirectedFamily f} where + open IsLub (⋁-isLub f dir) + renaming (isUpperBound to ⋁-≤; isLeast to ⋁-least) + public + +------------------------------------------------------------------------ +-- Scott‐continuous maps between two (possibly different‐universe) posets +------------------------------------------------------------------------ + +module _ {c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ : Level} + (P : Poset c₁ ℓ₁₁ ℓ₁₂) + (Q : Poset c₂ ℓ₂₁ ℓ₂₂) where + + private + module P = Poset P + module Q = Poset Q + + record IsScottContinuous (f : P.Carrier → Q.Carrier) + : Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) where + field + preserveLub : ∀ {B : Set c₁} {g : B → P.Carrier} + → (dir : IsDirectedFamily P g) + → (lub : P.Carrier) + → IsLub P g lub + → IsLub Q (f ∘ g) (f lub) + cong : ∀ {x y} → x P.≈ y → f x Q.≈ f y diff --git a/src/Relation/Binary/Properties/Domain.agda b/src/Relation/Binary/Properties/Domain.agda new file mode 100644 index 0000000000..7e72e1a109 --- /dev/null +++ b/src/Relation/Binary/Properties/Domain.agda @@ -0,0 +1,175 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Properties satisfied by directed complete partial orders +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Properties.Domain where + +open import Relation.Binary.Bundles using (Poset) +open import Level using (Level; Lift; lift) +open import Function using (_∘_; id) +open import Data.Product using (_,_; ∃) +open import Data.Bool using (Bool; true; false; if_then_else_) +open import Relation.Binary.Domain.Definitions +open import Relation.Binary.Domain.Bundles using (DirectedCompletePartialOrder) +open import Relation.Binary.Domain.Structures + using (IsDirectedFamily; IsDirectedCompletePartialOrder; IsLub; IsScottContinuous) +open import Relation.Binary.Morphism.Structures using (IsOrderHomomorphism) + +private variable + c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ c ℓ₁ ℓ₂ a ℓ : Level + Ix A B : Set a + +------------------------------------------------------------------------ +-- Properties of least upper bounds + +module _ (D : DirectedCompletePartialOrder c ℓ₁ ℓ₂) where + private + module D = DirectedCompletePartialOrder D + + uniqueLub : ∀ {s : Ix → D.Carrier} → (x y : D.Carrier) → + IsLub D.poset s x → IsLub D.poset s y → x D.≈ y + uniqueLub x y x-lub y-lub = D.antisym + (IsLub.isLeast x-lub y (IsLub.isUpperBound y-lub)) + (IsLub.isLeast y-lub x (IsLub.isUpperBound x-lub)) + + IsLub-cong : ∀ {s : Ix → D.Carrier} → {x y : D.Carrier} → x D.≈ y → + IsLub D.poset s x → IsLub D.poset s y + IsLub-cong x≈y x-lub = record + { isLeastUpperBound = + (λ i → D.trans (IsLub.isUpperBound x-lub i) (D.reflexive x≈y)) + , (λ z ub → D.trans (D.reflexive (D.Eq.sym x≈y)) (IsLub.isLeast x-lub z (λ i → D.trans (ub i) (D.reflexive D.Eq.refl)))) + } + +------------------------------------------------------------------------ +-- Scott continuity and monotonicity + +module _ {P : Poset c₁ ℓ₁₁ ℓ₁₂} {Q : Poset c₂ ℓ₂₁ ℓ₂₂} where + private + module P = Poset P + module Q = Poset Q + + isMonotone : (P-DirectedCompletePartialOrder : IsDirectedCompletePartialOrder P) → + (f : P.Carrier → Q.Carrier) → (isCts : IsScottContinuous P Q f) → + IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ f + isMonotone P-DirectedCompletePartialOrder f isCts = record + { cong = IsScottContinuous.cong isCts + ; mono = mono-proof + } + where + mono-proof : ∀ {x y} → x P.≤ y → f x Q.≤ f y + mono-proof {x} {y} x≤y = IsLub.isUpperBound fs-lub (lift true) + where + s : Lift c₁ Bool → P.Carrier + s (lift b) = if b then x else y + + sx≤sfalse : ∀ b → s b P.≤ s (lift false) + sx≤sfalse (lift true) = x≤y + sx≤sfalse (lift false) = P.refl + + s-directed : IsDirectedFamily P s + s-directed = record + { elt = lift true + ; isSemidirected = λ i j → (lift false , sx≤sfalse i , sx≤sfalse j) + } + + s-lub : IsLub P s y + s-lub = record { isLeastUpperBound = sx≤sfalse , (λ _ proof → proof (lift false))} + + fs-lub : IsLub Q (f ∘ s) (f y) + fs-lub = IsScottContinuous.preserveLub isCts s-directed y s-lub + + map-directed : {s : Ix → P.Carrier} → (f : P.Carrier → Q.Carrier)→ + IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ f → + IsDirectedFamily P s → IsDirectedFamily Q (f ∘ s) + map-directed f ismonotone dir = record + { elt = IsDirectedFamily.elt dir + ; isSemidirected = semi + } + where + module f = IsOrderHomomorphism ismonotone + + semi = λ i j → let (k , s[i]≤s[k] , s[j]≤s[k]) = IsDirectedFamily.isSemidirected dir i j + in k , f.mono s[i]≤s[k] , f.mono s[j]≤s[k] + +------------------------------------------------------------------------ +-- Scott continuous functions + +module _ {P Q R : Poset c ℓ₁ ℓ₂} where + private + module P = Poset P + module Q = Poset Q + module R = Poset R + + ScottId : {P : Poset c ℓ₁ ℓ₂} → IsScottContinuous P P id + ScottId = record + { preserveLub = λ _ _ → id + ; cong = id } + + cts-cong : (f : R.Carrier → Q.Carrier) (g : P.Carrier → R.Carrier) → + IsScottContinuous R Q f → IsScottContinuous P R g → + IsOrderHomomorphism P._≈_ R._≈_ P._≤_ R._≤_ g → IsScottContinuous P Q (f ∘ g) + cts-cong f g isCtsf isCtsG monog = record + { preserveLub = λ dir lub → f.preserveLub (map-directed g monog dir) (g lub) ∘ g.preserveLub dir lub + ; cong = f.cong ∘ g.cong + } + where + module f = IsScottContinuous isCtsf + module g = IsScottContinuous isCtsG + +------------------------------------------------------------------------ +-- Suprema and pointwise ordering + +module _ {P : Poset c ℓ₁ ℓ₂} (D : DirectedCompletePartialOrder c ℓ₁ ℓ₂) where + private + module D = DirectedCompletePartialOrder D + DP = D.poset + + lub-monotone : {s s' : Ix → D.Carrier} → + {fam : IsDirectedFamily DP s} {fam' : IsDirectedFamily DP s'} → + (∀ i → s i D.≤ s' i) → D.⋁ s fam D.≤ D.⋁ s' fam' + lub-monotone {s' = s'} {fam' = fam'} p = D.⋁-least (D.⋁ s' fam') λ i → D.trans (p i) (D.⋁-≤ i) + +------------------------------------------------------------------------ +-- Scott continuity module + +module ScottContinuity + (D E : DirectedCompletePartialOrder c ℓ₁ ℓ₂) + where + private + module D = DirectedCompletePartialOrder D + module E = DirectedCompletePartialOrder E + DP = D.poset + EP = E.poset + + module _ (f : D.Carrier → E.Carrier) + (isScott : IsScottContinuous DP EP f) + (mono : IsOrderHomomorphism D._≈_ E._≈_ D._≤_ E._≤_ f) + where + private module f = IsOrderHomomorphism mono + + pres-lub : (s : Ix → D.Carrier) → (dir : IsDirectedFamily DP s) → + f (D.⋁ s dir) E.≈ E.⋁ (f ∘ s) (map-directed f mono dir) + pres-lub s dir = E.antisym + (IsLub.isLeast + (IsScottContinuous.preserveLub isScott dir (D.⋁ s dir) (D.⋁-isLub s dir)) + (E.⋁ (f ∘ s) (map-directed f mono dir)) + E.⋁-≤ + ) + (IsLub.isLeast + (E.⋁-isLub (f ∘ s) (map-directed f mono dir)) + (f (D.⋁ s dir)) + (λ i → f.mono (D.⋁-≤ i)) + ) + + isScottContinuous : (∀ {Ix} (s : Ix → D.Carrier) (dir : IsDirectedFamily DP s) → + IsLub E.poset (f ∘ s) (f (D.⋁ s dir))) → + IsScottContinuous DP EP f + isScottContinuous pres-⋁ = record + { preserveLub = λ {_} {s} dir lub x → + IsLub-cong E (f.cong (uniqueLub D (D.⋁ s dir) lub (D.⋁-isLub s dir) x)) (pres-⋁ s dir) + ; cong = f.cong + }