diff --git a/CHANGELOG.md b/CHANGELOG.md index 2959d3d6ce..055fbf6250 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -123,6 +123,10 @@ New modules * `Data.Sign.Show` to show a sign +* Added a new domain theory section to the library under `Relation.Binary.Domain.*`: + - Introduced new modules and bundles for domain theory, including `DirectedCompletePartialOrder`, `Lub`, and `ScottContinuous`. + - All files for domain theory are now available in `src/Relation/Binary/Domain/`. + Additions to existing modules ----------------------------- diff --git a/src/Relation/Binary/Domain.agda b/src/Relation/Binary/Domain.agda new file mode 100644 index 0000000000..812e74a601 --- /dev/null +++ b/src/Relation/Binary/Domain.agda @@ -0,0 +1,16 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Order-theoretic Domains +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain where + +------------------------------------------------------------------------ +-- Re-export various components of the Domain hierarchy + +open import Relation.Binary.Domain.Definitions public +open import Relation.Binary.Domain.Structures public +open import Relation.Binary.Domain.Bundles public diff --git a/src/Relation/Binary/Domain/Bundles.agda b/src/Relation/Binary/Domain/Bundles.agda new file mode 100644 index 0000000000..6f5c032bf5 --- /dev/null +++ b/src/Relation/Binary/Domain/Bundles.agda @@ -0,0 +1,63 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Bundles for domain theory +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Bundles where + +open import Level using (Level; _⊔_; suc) +open import Relation.Binary.Bundles using (Poset) +open import Relation.Binary.Domain.Structures + using (IsDirectedFamily; IsDirectedCompletePartialOrder; IsScottContinuous + ; IsLub) + +private + variable + o ℓ e o' ℓ' e' ℓ₂ : Level + Ix A B : Set o + +------------------------------------------------------------------------ +-- Directed Complete Partial Orders +------------------------------------------------------------------------ + +record DirectedFamily {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} (f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where + field + isDirectedFamily : IsDirectedFamily P f + + open IsDirectedFamily isDirectedFamily public + +record DirectedCompletePartialOrder (c ℓ₁ ℓ₂ : Level) : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where + field + poset : Poset c ℓ₁ ℓ₂ + isDirectedCompletePartialOrder : IsDirectedCompletePartialOrder poset + + open Poset poset public + open IsDirectedCompletePartialOrder isDirectedCompletePartialOrder public + +------------------------------------------------------------------------ +-- Scott-continuous functions +------------------------------------------------------------------------ + +record ScottContinuous + {c₁ ℓ₁₁ ℓ₁₂ c₂ ℓ₂₁ ℓ₂₂ : Level} + (P : Poset c₁ ℓ₁₁ ℓ₁₂) + (Q : Poset c₂ ℓ₂₁ ℓ₂₂) : Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) where + field + f : Poset.Carrier P → Poset.Carrier Q + isScottContinuous : IsScottContinuous P Q f + + open IsScottContinuous isScottContinuous public + +------------------------------------------------------------------------ +-- Lubs +------------------------------------------------------------------------ + +record Lub {c ℓ₁ ℓ₂ : Level} {P : Poset c ℓ₁ ℓ₂} {B : Set c} + (f : B → Poset.Carrier P) : Set (c ⊔ ℓ₁ ⊔ ℓ₂) where + open Poset P + field + lub : Carrier + isLub : IsLub P f lub diff --git a/src/Relation/Binary/Domain/Definitions.agda b/src/Relation/Binary/Domain/Definitions.agda new file mode 100644 index 0000000000..b0b0a3e093 --- /dev/null +++ b/src/Relation/Binary/Domain/Definitions.agda @@ -0,0 +1,41 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Definitions for domain theory +------------------------------------------------------------------------ + + + + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Definitions where + +open import Data.Product using (∃-syntax; _×_; _,_) +open import Function using (_∘_) +open import Level using (Level; _⊔_; suc) +open import Relation.Binary.Core using (Rel) + +private + variable + a b i ℓ ℓ₁ ℓ₂ : Level + A : Set a + B : Set b + I : Set ℓ + +------------------------------------------------------------------------ +-- Directed families +------------------------------------------------------------------------ + +semidirected : {A : Set a} → Rel A ℓ → (B : Set b) → (B → A) → Set _ +semidirected _≤_ B f = ∀ i j → ∃[ k ] (f i ≤ f k × f j ≤ f k) + +------------------------------------------------------------------------ +-- Least upper bounds +------------------------------------------------------------------------ + +leastupperbound : {A : Set a} → Rel A ℓ → {B : Set b} → (g : B → A) → A → Set _ +leastupperbound _≤_ g lub = (∀ i → g i ≤ lub) × (∀ y → (∀ i → g i ≤ y) → lub ≤ y) + +preserveLubs : {A : Set a} {B : Set b } (≤₁ : Rel A ℓ₁) (≤₂ : Rel B ℓ₂) (f : A → B) → Set (suc (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)) +preserveLubs ≤₁ ≤₂ f = ∀ {I} → ∀ {g : I → _} → ∀ lub → leastupperbound ≤₁ g lub → leastupperbound ≤₂ (f ∘ g) (f lub) diff --git a/src/Relation/Binary/Domain/Structures.agda b/src/Relation/Binary/Domain/Structures.agda new file mode 100644 index 0000000000..f97b6609f0 --- /dev/null +++ b/src/Relation/Binary/Domain/Structures.agda @@ -0,0 +1,76 @@ +------------------------------------------------------------------------ +-- The Agda standard library +-- +-- Structures for domain theory +------------------------------------------------------------------------ + +{-# OPTIONS --cubical-compatible --safe #-} + +module Relation.Binary.Domain.Structures where + +open import Data.Product using (_×_; _,_; proj₁; proj₂) +open import Function using (_∘_) +open import Level using (Level; _⊔_; suc) +open import Relation.Binary.Bundles using (Poset) +open import Relation.Binary.Domain.Definitions + using (semidirected; leastupperbound; preserveLubs) +open import Relation.Binary.Morphism.Structures using (IsOrderHomomorphism) + +private variable + a b c c₁ c₂ ℓ ℓ₁ ℓ₂ ℓ₁₁ ℓ₁₂ ℓ₂₁ ℓ₂₂ : Level + A B : Set a + + +module _ (P : Poset c ℓ₁ ℓ₂) where + open Poset P + + record IsLub {b : Level} {B : Set b} (f : B → Carrier) + (lub : Carrier) : Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where + field + isLeastUpperBound : leastupperbound _≤_ f lub + + isUpperBound : ∀ i → f i ≤ lub + isUpperBound = proj₁ isLeastUpperBound + + isLeast : ∀ y → (∀ i → f i ≤ y) → lub ≤ y + isLeast = proj₂ isLeastUpperBound + + record IsDirectedFamily {b : Level} {B : Set b} (f : B → Carrier) : + Set (b ⊔ c ⊔ ℓ₁ ⊔ ℓ₂) where + no-eta-equality + field + elt : B + isSemidirected : semidirected _≤_ B f + + record IsDirectedCompletePartialOrder : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where + field + ⋁ : ∀ {B : Set c} → + (f : B → Carrier) → + IsDirectedFamily f → + Carrier + ⋁-isLub : ∀ {B : Set c} + → (f : B → Carrier) + → (dir : IsDirectedFamily f) + → IsLub f (⋁ f dir) + + module _ {B : Set c} {f : B → Carrier} {dir : IsDirectedFamily f} where + open IsLub (⋁-isLub f dir) + renaming (isUpperBound to ⋁-≤; isLeast to ⋁-least) + public + +------------------------------------------------------------------------ +-- Scott‐continuous maps between two (possibly different‐universe) posets +------------------------------------------------------------------------ + +module _ (P : Poset c₁ ℓ₁₁ ℓ₁₂) (Q : Poset c₂ ℓ₂₁ ℓ₂₂) + where + module P = Poset P + module Q = Poset Q + + record IsScottContinuous (f : P.Carrier → Q.Carrier) : Set (suc (c₁ ⊔ ℓ₁₁ ⊔ ℓ₁₂ ⊔ c₂ ⊔ ℓ₂₁ ⊔ ℓ₂₂)) + where + field + preservelub : preserveLubs P._≤_ Q._≤_ f + isOrderHomomorphism : IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ f + + open IsOrderHomomorphism isOrderHomomorphism public