diff --git a/src/Algebra/Properties/CommutativeMagma/Divisibility.agda b/src/Algebra/Properties/CommutativeMagma/Divisibility.agda index 9261d80e82..432f039203 100644 --- a/src/Algebra/Properties/CommutativeMagma/Divisibility.agda +++ b/src/Algebra/Properties/CommutativeMagma/Divisibility.agda @@ -28,7 +28,7 @@ x∣xy : ∀ x y → x ∣ x ∙ y x∣xy x y = y , comm y x xy≈z⇒x∣z : ∀ x y {z} → x ∙ y ≈ z → x ∣ z -xy≈z⇒x∣z x y xy≈z = ∣-respʳ xy≈z (x∣xy x y) +xy≈z⇒x∣z x y xy≈z = ∣-respʳ-≈ xy≈z (x∣xy x y) x|xy∧y|xy : ∀ x y → (x ∣ x ∙ y) × (y ∣ x ∙ y) x|xy∧y|xy x y = x∣xy x y , x∣yx y x diff --git a/src/Algebra/Properties/Magma/Divisibility.agda b/src/Algebra/Properties/Magma/Divisibility.agda index cbbc4cac70..1d38c29d42 100644 --- a/src/Algebra/Properties/Magma/Divisibility.agda +++ b/src/Algebra/Properties/Magma/Divisibility.agda @@ -39,7 +39,7 @@ x∣yx : ∀ x y → x ∣ y ∙ x x∣yx x y = y , refl xy≈z⇒y∣z : ∀ x y {z} → x ∙ y ≈ z → y ∣ z -xy≈z⇒y∣z x y xy≈z = ∣-respʳ-≈ xy≈z (x∣yx y x) +xy≈z⇒y∣z x y xy≈z = x , xy≈z ------------------------------------------------------------------------ -- Properties of non-divisibility