diff --git a/src/Algebra/Apartness/Bundles.agda b/src/Algebra/Apartness/Bundles.agda index 9a55794051..ba9c715ff4 100644 --- a/src/Algebra/Apartness/Bundles.agda +++ b/src/Algebra/Apartness/Bundles.agda @@ -13,7 +13,7 @@ open import Relation.Binary.Core using (Rel) open import Relation.Binary.Bundles using (ApartnessRelation) open import Algebra.Core using (Op₁; Op₂) open import Algebra.Bundles using (CommutativeRing) -open import Algebra.Apartness.Structures +open import Algebra.Apartness.Structures using (IsHeytingCommutativeRing; IsHeytingField) record HeytingCommutativeRing c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where infix 8 -_ diff --git a/src/Algebra/Construct/Add/Identity.agda b/src/Algebra/Construct/Add/Identity.agda index a22e6785fd..db0d029ea7 100644 --- a/src/Algebra/Construct/Add/Identity.agda +++ b/src/Algebra/Construct/Add/Identity.agda @@ -14,9 +14,9 @@ open import Algebra.Core using (Op₂) open import Algebra.Definitions using (Congruent₂; Associative; LeftIdentity; RightIdentity; Identity) open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid) -open import Relation.Binary.Construct.Add.Point.Equality renaming (_≈∙_ to lift≈) open import Data.Product.Base using (_,_) open import Level using (Level; _⊔_) +open import Relation.Binary.Construct.Add.Point.Equality renaming (_≈∙_ to lift≈) open import Relation.Binary.Core using (Rel) open import Relation.Binary.Definitions using (Reflexive) open import Relation.Binary.Structures using (IsEquivalence)