-
Notifications
You must be signed in to change notification settings - Fork 259
Open
Description
agda-stdlib/src/Relation/Nullary/Decidable/Core.agda
Lines 91 to 122 in 2ce5eb3
| ------------------------------------------------------------------------ | |
| -- Interaction with negation, sum, product etc. | |
| infixr 1 _⊎-dec_ | |
| infixr 2 _×-dec_ _→-dec_ | |
| T? : ∀ x → Dec (T x) | |
| T? x = x because T-reflects x | |
| ¬? : Dec A → Dec (¬ A) | |
| does (¬? a?) = not (does a?) | |
| proof (¬? a?) = ¬-reflects (proof a?) | |
| ⊤-dec : Dec {a} ⊤ | |
| does ⊤-dec = true | |
| proof ⊤-dec = ⊤-reflects | |
| _×-dec_ : Dec A → Dec B → Dec (A × B) | |
| does (a? ×-dec b?) = does a? ∧ does b? | |
| proof (a? ×-dec b?) = proof a? ×-reflects proof b? | |
| ⊥-dec : Dec {a} ⊥ | |
| does ⊥-dec = false | |
| proof ⊥-dec = ⊥-reflects | |
| _⊎-dec_ : Dec A → Dec B → Dec (A ⊎ B) | |
| does (a? ⊎-dec b?) = does a? ∨ does b? | |
| proof (a? ⊎-dec b?) = proof a? ⊎-reflects proof b? | |
| _→-dec_ : Dec A → Dec B → Dec (A → B) | |
| does (a? →-dec b?) = not (does a?) ∨ does b? | |
| proof (a? →-dec b?) = proof a? →-reflects proof b? |
T? : ∀ x → Dec (T x)
¬? : Dec A → Dec (¬ A)
⊤-dec : Dec {a} ⊤
_×-dec_ : Dec A → Dec B → Dec (A × B)
⊥-dec : Dec {a} ⊥
_⊎-dec_ : Dec A → Dec B → Dec (A ⊎ B)
_→-dec_ : Dec A → Dec B → Dec (A → B)when, presumably (?), we should be consistent and instead write
------------------------------------------------------------------------
-- Interaction with negation, sum, product etc.
infixr 1 _⊎?_
infixr 2 _×?_ _→?_
T? : ∀ x → Dec (T x)
T? x = x because T-reflects x
¬? : Dec A → Dec (¬ A)
does (¬? a?) = not (does a?)
proof (¬? a?) = ¬-reflects (proof a?)
⊤? : Dec {a} ⊤
does ⊤? = true
proof ⊤? = ⊤-reflects
_×?_ : Dec A → Dec B → Dec (A × B)
does (a? ×? b?) = does a? ∧ does b?
proof (a? ×? b?) = proof a? ×-reflects proof b?
⊥? : Dec {a} ⊥
does ⊥? = false
proof ⊥? = ⊥-reflects
_⊎?_ : Dec A → Dec B → Dec (A ⊎ B)
does (a? ⊎? b?) = does a? ∨ does b?
proof (a? ⊎? b?) = proof a? ⊎-reflects proof b?
_→?_ : Dec A → Dec B → Dec (A → B)
does (a? →? b?) = not (does a?) ∨ does b?
proof (a? →? b?) = proof a? →-reflects proof b?and deprecate the old names?
gallais and MatthewDaggitt