File tree Expand file tree Collapse file tree 2 files changed +13
-9
lines changed Expand file tree Collapse file tree 2 files changed +13
-9
lines changed Original file line number Diff line number Diff line change @@ -10,26 +10,30 @@ module Axiom.DoubleNegationElimination where
10
10
11
11
open import Axiom.ExcludedMiddle
12
12
open import Level
13
- open import Relation.Nullary
14
- open import Relation.Nullary.Negation
15
- open import Relation.Nullary.Decidable
13
+ open import Relation.Nullary.Decidable.Core
14
+ using (decidable-stable; ¬¬-excluded-middle)
15
+ open import Relation.Nullary.Negation.Core using (Stable)
16
+
17
+ private
18
+ variable
19
+ ℓ : Level
16
20
17
21
------------------------------------------------------------------------
18
22
-- Definition
19
23
20
24
-- The classical statement of double negation elimination says that
21
25
-- if a property is not not true then it is true.
22
26
23
- DoubleNegationElimination : (ℓ : Level) → Set (suc ℓ)
24
- DoubleNegationElimination ℓ = {P : Set ℓ} → ¬ ¬ P → P
27
+ DoubleNegationElimination : ∀ ℓ → Set (suc ℓ)
28
+ DoubleNegationElimination ℓ = {P : Set ℓ} → Stable P
25
29
26
30
------------------------------------------------------------------------
27
31
-- Properties
28
32
29
33
-- Double negation elimination is equivalent to excluded middle
30
34
31
- em⇒dne : ∀ {ℓ} → ExcludedMiddle ℓ → DoubleNegationElimination ℓ
35
+ em⇒dne : ExcludedMiddle ℓ → DoubleNegationElimination ℓ
32
36
em⇒dne em = decidable-stable em
33
37
34
- dne⇒em : ∀ {ℓ} → DoubleNegationElimination ℓ → ExcludedMiddle ℓ
38
+ dne⇒em : DoubleNegationElimination ℓ → ExcludedMiddle ℓ
35
39
dne⇒em dne = dne ¬¬-excluded-middle
Original file line number Diff line number Diff line change 9
9
module Axiom.ExcludedMiddle where
10
10
11
11
open import Level
12
- open import Relation.Nullary
12
+ open import Relation.Nullary.Decidable.Core using (Dec)
13
13
14
14
------------------------------------------------------------------------
15
15
-- Definition
16
16
17
17
-- The classical statement of excluded middle says that every
18
18
-- statement/set is decidable (i.e. it either holds or it doesn't hold).
19
19
20
- ExcludedMiddle : (ℓ : Level) → Set (suc ℓ)
20
+ ExcludedMiddle : ∀ ℓ → Set (suc ℓ)
21
21
ExcludedMiddle ℓ = {P : Set ℓ} → Dec P
You can’t perform that action at this time.
0 commit comments