Skip to content

Commit 85014f8

Browse files
Lightened dependencies of Data.Nat.Induction (#1698)
1 parent 9bf16e2 commit 85014f8

File tree

1 file changed

+10
-12
lines changed

1 file changed

+10
-12
lines changed

src/Data/Nat/Induction.agda

+10-12
Original file line numberDiff line numberDiff line change
@@ -8,16 +8,14 @@
88

99
module Data.Nat.Induction where
1010

11-
open import Function
1211
open import Data.Nat.Base
1312
open import Data.Nat.Properties using (<⇒<′)
1413
open import Data.Product
15-
open import Data.Unit.Polymorphic
14+
open import Data.Unit.Polymorphic.Base
15+
open import Function.Base
1616
open import Induction
1717
open import Induction.WellFounded as WF
1818
open import Level using (Level)
19-
open import Relation.Binary.PropositionalEquality
20-
open import Relation.Unary
2119

2220
private
2321
variable
@@ -35,11 +33,11 @@ Rec : ∀ ℓ → RecStruct ℕ ℓ ℓ
3533
Rec ℓ P zero =
3634
Rec ℓ P (suc n) = P n
3735

38-
recBuilder : {ℓ} RecursorBuilder (Rec ℓ)
36+
recBuilder : RecursorBuilder (Rec ℓ)
3937
recBuilder P f zero = _
4038
recBuilder P f (suc n) = f n (recBuilder P f n)
4139

42-
rec : {ℓ} Recursor (Rec ℓ)
40+
rec : Recursor (Rec ℓ)
4341
rec = build recBuilder
4442

4543
------------------------------------------------------------------------
@@ -49,18 +47,18 @@ CRec : ∀ ℓ → RecStruct ℕ ℓ ℓ
4947
CRec ℓ P zero =
5048
CRec ℓ P (suc n) = P n × CRec ℓ P n
5149

52-
cRecBuilder : {ℓ} RecursorBuilder (CRec ℓ)
50+
cRecBuilder : RecursorBuilder (CRec ℓ)
5351
cRecBuilder P f zero = _
5452
cRecBuilder P f (suc n) = f n ih , ih
5553
where ih = cRecBuilder P f n
5654

57-
cRec : {ℓ} Recursor (CRec ℓ)
55+
cRec : Recursor (CRec ℓ)
5856
cRec = build cRecBuilder
5957

6058
------------------------------------------------------------------------
6159
-- Complete induction based on _<′_
6260

63-
<′-Rec : {ℓ} RecStruct ℕ ℓ ℓ
61+
<′-Rec : RecStruct ℕ ℓ ℓ
6462
<′-Rec = WfRec _<′_
6563

6664
-- mutual definition
@@ -73,7 +71,7 @@ cRec = build cRecBuilder
7371
<′-wellFounded′ (suc n) n <′-base = <′-wellFounded n
7472
<′-wellFounded′ (suc n) m (<′-step m<n) = <′-wellFounded′ n m m<n
7573

76-
module _ {ℓ} where
74+
module _ {ℓ : Level} where
7775
open WF.All <′-wellFounded ℓ public
7876
renaming ( wfRecBuilder to <′-recBuilder
7977
; wfRec to <′-rec
@@ -83,7 +81,7 @@ module _ {ℓ} where
8381
------------------------------------------------------------------------
8482
-- Complete induction based on _<_
8583

86-
<-Rec : {ℓ} RecStruct ℕ ℓ ℓ
84+
<-Rec : RecStruct ℕ ℓ ℓ
8785
<-Rec = WfRec _<_
8886

8987
<-wellFounded : WellFounded _<_
@@ -105,7 +103,7 @@ module _ {ℓ} where
105103
<-wellFounded-skip (suc k) zero = <-wellFounded 0
106104
<-wellFounded-skip (suc k) (suc n) = acc (λ m _ <-wellFounded-skip k m)
107105

108-
module _ {ℓ} where
106+
module _ {ℓ : Level} where
109107
open WF.All <-wellFounded ℓ public
110108
renaming ( wfRecBuilder to <-recBuilder
111109
; wfRec to <-rec

0 commit comments

Comments
 (0)