|
17 | 17 | <a id="625" class="Keyword">open</a> <a id="630" class="Keyword">import</a> <a id="637" href="Relation.Binary.Core.html" class="Module">Relation.Binary.Core</a> <a id="658" class="Keyword">using</a> <a id="664" class="Symbol">(</a><a id="665" href="Relation.Binary.Core.html#896" class="Function">Rel</a><a id="668" class="Symbol">)</a> |
18 | 18 | <a id="670" class="Keyword">open</a> <a id="675" class="Keyword">import</a> <a id="682" href="Relation.Binary.Definitions.html" class="Module">Relation.Binary.Definitions</a> <a id="710" class="Keyword">using</a> <a id="716" class="Symbol">(</a><a id="717" href="Relation.Binary.Definitions.html#6907" class="Function">Decidable</a><a id="726" class="Symbol">)</a> |
19 | 19 | <a id="728" class="Keyword">open</a> <a id="733" class="Keyword">import</a> <a id="740" href="Relation.Nullary.Decidable.Core.html" class="Module">Relation.Nullary.Decidable.Core</a> <a id="772" class="Keyword">using</a> <a id="778" class="Symbol">(</a><a id="779" href="Relation.Nullary.Decidable.Core.html#2038" class="Field">does</a><a id="783" class="Symbol">;</a> <a id="785" href="Relation.Nullary.Decidable.Core.html#2105" class="InductiveConstructor">yes</a><a id="788" class="Symbol">;</a> <a id="790" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a><a id="792" class="Symbol">)</a> |
20 | | -<a id="794" class="Keyword">open</a> <a id="799" class="Keyword">import</a> <a id="806" href="Relation.Nullary.Negation.Core.html" class="Module">Relation.Nullary.Negation.Core</a> <a id="837" class="Keyword">using</a> <a id="843" class="Symbol">(</a><a id="844" href="Relation.Nullary.Negation.Core.html#673" class="Function Operator">¬_</a><a id="846" class="Symbol">;</a> <a id="848" href="Relation.Nullary.Negation.Core.html#1355" class="Function">contradiction</a><a id="861" class="Symbol">;</a> <a id="863" href="Relation.Nullary.Negation.Core.html#1435" class="Function">contradiction₂</a><a id="877" class="Symbol">)</a> |
| 20 | +<a id="794" class="Keyword">open</a> <a id="799" class="Keyword">import</a> <a id="806" href="Relation.Nullary.Negation.Core.html" class="Module">Relation.Nullary.Negation.Core</a> <a id="837" class="Keyword">using</a> <a id="843" class="Symbol">(</a><a id="844" href="Relation.Nullary.Negation.Core.html#673" class="Function Operator">¬_</a><a id="846" class="Symbol">;</a> <a id="848" href="Relation.Nullary.Negation.Core.html#1355" class="Function">contradiction</a><a id="861" class="Symbol">;</a> <a id="863" href="Relation.Nullary.Negation.Core.html#1517" class="Function">contradiction₂</a><a id="877" class="Symbol">)</a> |
21 | 21 | <a id="879" class="Keyword">import</a> <a id="886" href="Relation.Binary.Reasoning.Setoid.html" class="Module">Relation.Binary.Reasoning.Setoid</a> <a id="919" class="Symbol">as</a> <a id="922" class="Module">≈-Reasoning</a> |
22 | 22 |
|
23 | 23 | <a id="935" class="Keyword">module</a> <a id="942" href="Algebra.Construct.LexProduct.html" class="Module">Algebra.Construct.LexProduct</a> |
|
105 | 105 |
|
106 | 106 | <a id="sel"></a><a id="3314" href="Algebra.Construct.LexProduct.html#3314" class="Function">sel</a> <a id="3318" class="Symbol">:</a> <a id="3320" href="Algebra.Definitions.html#3969" class="Function">Selective</a> <a id="3330" href="Algebra.Construct.LexProduct.html#1146" class="Function Operator">_≈₁_</a> <a id="3335" href="Algebra.Bundles.html#1884" class="Function Operator">_∙_</a> <a id="3339" class="Symbol">→</a> <a id="3341" href="Algebra.Definitions.html#3969" class="Function">Selective</a> <a id="3351" href="Algebra.Construct.LexProduct.html#1261" class="Function Operator">_≈₂_</a> <a id="3356" href="Algebra.Construct.LexProduct.html#1242" class="Function Operator">_◦_</a> <a id="3360" class="Symbol">→</a> <a id="3362" href="Algebra.Definitions.html#3969" class="Function">Selective</a> <a id="3372" href="Algebra.Construct.LexProduct.html#1382" class="Function Operator">_≋_</a> <a id="3376" href="Algebra.Construct.LexProduct.html#1701" class="Function Operator">_⊕_</a> |
107 | 107 | <a id="3380" href="Algebra.Construct.LexProduct.html#3314" class="Function">sel</a> <a id="3384" href="Algebra.Construct.LexProduct.html#3384" class="Bound">∙-sel</a> <a id="3390" href="Algebra.Construct.LexProduct.html#3390" class="Bound">◦-sel</a> <a id="3396" class="Symbol">(</a><a id="3397" href="Algebra.Construct.LexProduct.html#3397" class="Bound">a</a> <a id="3399" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,</a> <a id="3401" href="Algebra.Construct.LexProduct.html#3401" class="Bound">x</a><a id="3402" class="Symbol">)</a> <a id="3404" class="Symbol">(</a><a id="3405" href="Algebra.Construct.LexProduct.html#3405" class="Bound">b</a> <a id="3407" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,</a> <a id="3409" href="Algebra.Construct.LexProduct.html#3409" class="Bound">y</a><a id="3410" class="Symbol">)</a> <a id="3412" class="Keyword">with</a> <a id="3417" class="Symbol">(</a><a id="3418" href="Algebra.Construct.LexProduct.html#3397" class="Bound">a</a> <a id="3420" href="Algebra.Bundles.html#1884" class="Function Operator">∙</a> <a id="3422" href="Algebra.Construct.LexProduct.html#3405" class="Bound">b</a><a id="3423" class="Symbol">)</a> <a id="3425" href="Algebra.Construct.LexProduct.html#1026" class="Bound Operator">≟₁</a> <a id="3428" href="Algebra.Construct.LexProduct.html#3397" class="Bound">a</a> <a id="3430" class="Symbol">|</a> <a id="3432" class="Symbol">(</a><a id="3433" href="Algebra.Construct.LexProduct.html#3397" class="Bound">a</a> <a id="3435" href="Algebra.Bundles.html#1884" class="Function Operator">∙</a> <a id="3437" href="Algebra.Construct.LexProduct.html#3405" class="Bound">b</a><a id="3438" class="Symbol">)</a> <a id="3440" href="Algebra.Construct.LexProduct.html#1026" class="Bound Operator">≟₁</a> <a id="3443" href="Algebra.Construct.LexProduct.html#3405" class="Bound">b</a> |
108 | | -<a id="3445" class="Symbol">...</a> <a id="3449" class="Symbol">|</a> <a id="3451" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3455" href="Algebra.Construct.LexProduct.html#3455" class="Bound">ab≉a</a> <a id="3460" class="Symbol">|</a> <a id="3462" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3466" href="Algebra.Construct.LexProduct.html#3466" class="Bound">ab≉b</a> <a id="3472" class="Symbol">=</a> <a id="3474" href="Relation.Nullary.Negation.Core.html#1435" class="Function">contradiction₂</a> <a id="3489" class="Symbol">(</a><a id="3490" class="Bound">∙-sel</a> <a id="3496" class="Bound">a</a> <a id="3498" class="Bound">b</a><a id="3499" class="Symbol">)</a> <a id="3501" href="Algebra.Construct.LexProduct.html#3455" class="Bound">ab≉a</a> <a id="3506" href="Algebra.Construct.LexProduct.html#3466" class="Bound">ab≉b</a> |
| 108 | +<a id="3445" class="Symbol">...</a> <a id="3449" class="Symbol">|</a> <a id="3451" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3455" href="Algebra.Construct.LexProduct.html#3455" class="Bound">ab≉a</a> <a id="3460" class="Symbol">|</a> <a id="3462" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3466" href="Algebra.Construct.LexProduct.html#3466" class="Bound">ab≉b</a> <a id="3472" class="Symbol">=</a> <a id="3474" href="Relation.Nullary.Negation.Core.html#1517" class="Function">contradiction₂</a> <a id="3489" class="Symbol">(</a><a id="3490" class="Bound">∙-sel</a> <a id="3496" class="Bound">a</a> <a id="3498" class="Bound">b</a><a id="3499" class="Symbol">)</a> <a id="3501" href="Algebra.Construct.LexProduct.html#3455" class="Bound">ab≉a</a> <a id="3506" href="Algebra.Construct.LexProduct.html#3466" class="Bound">ab≉b</a> |
109 | 109 | <a id="3511" class="Symbol">...</a> <a id="3515" class="Symbol">|</a> <a id="3517" href="Relation.Nullary.Decidable.Core.html#2105" class="InductiveConstructor">yes</a> <a id="3521" href="Algebra.Construct.LexProduct.html#3521" class="Bound">ab≈a</a> <a id="3526" class="Symbol">|</a> <a id="3528" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3532" class="Symbol">_</a> <a id="3538" class="Symbol">=</a> <a id="3540" href="Data.Sum.Base.html#675" class="InductiveConstructor">inj₁</a> <a id="3545" class="Symbol">(</a><a id="3546" href="Algebra.Construct.LexProduct.html#3521" class="Bound">ab≈a</a> <a id="3551" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,</a> <a id="3553" href="Algebra.Construct.LexProduct.html#1281" class="Function">≈₂-refl</a><a id="3560" class="Symbol">)</a> |
110 | 110 | <a id="3562" class="Symbol">...</a> <a id="3566" class="Symbol">|</a> <a id="3568" href="Relation.Nullary.Decidable.Core.html#2142" class="InductiveConstructor">no</a> <a id="3572" class="Symbol">_</a> <a id="3577" class="Symbol">|</a> <a id="3579" href="Relation.Nullary.Decidable.Core.html#2105" class="InductiveConstructor">yes</a> <a id="3583" href="Algebra.Construct.LexProduct.html#3583" class="Bound">ab≈b</a> <a id="3589" class="Symbol">=</a> <a id="3591" href="Data.Sum.Base.html#700" class="InductiveConstructor">inj₂</a> <a id="3596" class="Symbol">(</a><a id="3597" href="Algebra.Construct.LexProduct.html#3583" class="Bound">ab≈b</a> <a id="3602" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,</a> <a id="3604" href="Algebra.Construct.LexProduct.html#1281" class="Function">≈₂-refl</a><a id="3611" class="Symbol">)</a> |
111 | 111 | <a id="3613" class="Symbol">...</a> <a id="3617" class="Symbol">|</a> <a id="3619" href="Relation.Nullary.Decidable.Core.html#2105" class="InductiveConstructor">yes</a> <a id="3623" href="Algebra.Construct.LexProduct.html#3623" class="Bound">ab≈a</a> <a id="3628" class="Symbol">|</a> <a id="3630" href="Relation.Nullary.Decidable.Core.html#2105" class="InductiveConstructor">yes</a> <a id="3634" href="Algebra.Construct.LexProduct.html#3634" class="Bound">ab≈b</a> <a id="3640" class="Symbol">=</a> <a id="3642" href="Data.Sum.Base.html#1253" class="Function">map</a> <a id="3646" class="Symbol">(</a><a id="3647" href="Algebra.Construct.LexProduct.html#3623" class="Bound">ab≈a</a> <a id="3652" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,_</a><a id="3654" class="Symbol">)</a> <a id="3656" class="Symbol">(</a><a id="3657" href="Algebra.Construct.LexProduct.html#3634" class="Bound">ab≈b</a> <a id="3662" href="Agda.Builtin.Sigma.html#235" class="InductiveConstructor Operator">,_</a><a id="3664" class="Symbol">)</a> <a id="3666" class="Symbol">(</a><a id="3667" class="Bound">◦-sel</a> <a id="3673" class="Bound">x</a> <a id="3675" class="Bound">y</a><a id="3676" class="Symbol">)</a> |
|
0 commit comments