diff --git a/src/Data/Product/Function/Dependent/Propositional.agda b/src/Data/Product/Function/Dependent/Propositional.agda index e39ec31bdc..8bc6f71257 100644 --- a/src/Data/Product/Function/Dependent/Propositional.agda +++ b/src/Data/Product/Function/Dependent/Propositional.agda @@ -194,19 +194,19 @@ module _ where to′ = map (to I↠J) (to A↠B) backcast : ∀ {i} → B i → B (to I↠J (section I↠J i)) - backcast = ≡.subst B (≡.sym (section-strictInverseˡ I↠J _)) + backcast = ≡.subst B (≡.sym (strictlyInverseˡ I↠J _)) section′ : Σ J B → Σ I A section′ = map (section I↠J) (section A↠B ∘ backcast) strictlySurjective′ : StrictlySurjective _≡_ to′ strictlySurjective′ (x , y) = section′ (x , y) , Σ-≡,≡→≡ - ( section-strictInverseˡ I↠J x + ( strictlyInverseˡ I↠J x , (begin - ≡.subst B (section-strictInverseˡ I↠J x) (to A↠B (section A↠B (backcast y))) - ≡⟨ ≡.cong (≡.subst B _) (section-strictInverseˡ A↠B _) ⟩ - ≡.subst B (section-strictInverseˡ I↠J x) (backcast y) - ≡⟨ ≡.subst-subst-sym (section-strictInverseˡ I↠J x) ⟩ + ≡.subst B (strictlyInverseˡ I↠J x) (to A↠B (section A↠B (backcast y))) + ≡⟨ ≡.cong (≡.subst B _) (strictlyInverseˡ A↠B _) ⟩ + ≡.subst B (strictlyInverseˡ I↠J x) (backcast y) + ≡⟨ ≡.subst-subst-sym (strictlyInverseˡ I↠J x) ⟩ y ∎) ) where open ≡.≡-Reasoning @@ -254,7 +254,7 @@ module _ where Σ-↔ {I = I} {J = J} {A = A} {B = B} I↔J A↔B = mk↔ₛ′ (Surjection.to surjection′) (Surjection.section surjection′) - (Surjection.section-strictInverseˡ surjection′) + (Surjection.strictlyInverseˡ surjection′) left-inverse-of where open ≡.≡-Reasoning diff --git a/src/Data/Product/Function/Dependent/Setoid.agda b/src/Data/Product/Function/Dependent/Setoid.agda index 32c52e5944..72fdd05347 100644 --- a/src/Data/Product/Function/Dependent/Setoid.agda +++ b/src/Data/Product/Function/Dependent/Setoid.agda @@ -122,8 +122,8 @@ module _ where B-from : ∀ {y} → Func (B atₛ y) (A atₛ (ItoJ.section y)) B-from = record - { to = from A⇔B ∘ cast B (ItoJ.section-strictInverseˡ _) - ; cong = from-cong A⇔B ∘ cast-cong B (ItoJ.section-strictInverseˡ _) + { to = from A⇔B ∘ cast B (ItoJ.strictlyInverseˡ _) + ; cong = from-cong A⇔B ∘ cast-cong B (ItoJ.strictlyInverseˡ _) } ------------------------------------------------------------------------ @@ -172,11 +172,11 @@ module _ where func = function (Surjection.function I↠J) (Surjection.function A↠B) section′ : Carrier (J ×ₛ B) → Carrier (I ×ₛ A) - section′ (j , y) = section I↠J j , section A↠B (cast B (section-strictInverseˡ I↠J _) y) + section′ (j , y) = section I↠J j , section A↠B (cast B (strictlyInverseˡ I↠J _) y) strictlySurj : StrictlySurjective (Func.Eq₂._≈_ func) (Func.to func) strictlySurj (j , y) = section′ (j , y) , - section-strictInverseˡ I↠J j , IndexedSetoid.trans B (section-strictInverseˡ A↠B _) (cast-eq B (section-strictInverseˡ I↠J j)) + strictlyInverseˡ I↠J j , IndexedSetoid.trans B (strictlyInverseˡ A↠B _) (cast-eq B (strictlyInverseˡ I↠J j)) surj : Surjective (Func.Eq₁._≈_ func) (Func.Eq₂._≈_ func) (Func.to func) surj = strictlySurjective⇒surjective (I ×ₛ A) (J ×ₛ B) (Func.cong func) strictlySurj