Skip to content

Commit 3d54042

Browse files
gallaisMatthewDaggittTanebjamesmckinna
authored andcommitted
[ new ] ⁻¹-anti-homo-(// | \\) (#2349)
* [ new ] ¹-anti-homo‿- * Update CHANGELOG.md Co-authored-by: Nathan van Doorn <[email protected]> * Update src/Algebra/Properties/Group.agda Co-authored-by: jamesmckinna <[email protected]> * Update CHANGELOG.md Co-authored-by: jamesmckinna <[email protected]> * [ more ] symmetric lemma * [ new ] ⁻¹-anti-homo‿- : (x - y) ⁻¹ ≈ y - x --------- Co-authored-by: MatthewDaggitt <[email protected]> Co-authored-by: Nathan van Doorn <[email protected]> Co-authored-by: jamesmckinna <[email protected]>
1 parent fd82f5c commit 3d54042

File tree

3 files changed

+26
-0
lines changed

3 files changed

+26
-0
lines changed

CHANGELOG.md

+7
Original file line numberDiff line numberDiff line change
@@ -236,6 +236,11 @@ Additions to existing modules
236236
record IsSuccessorSetMonomorphism (⟦_⟧ : N₁.Carrier → N₂.Carrier) : Set _
237237
record IsSuccessorSetIsomorphism (⟦_⟧ : N₁.Carrier → N₂.Carrier) : Set _
238238
239+
* In `Algebra.Properties.AbelianGroup`:
240+
```
241+
⁻¹-anti-homo‿- : (x - y) ⁻¹ ≈ y - x
242+
```
243+
239244
* In `Algebra.Properties.Group`:
240245
```agda
241246
isQuasigroup : IsQuasigroup _∙_ _\\_ _//_
@@ -253,6 +258,8 @@ Additions to existing modules
253258
⁻¹-selfInverse : SelfInverse _⁻¹
254259
\\≗flip-//⇒comm : (∀ x y → x \\ y ≈ y // x) → Commutative _∙_
255260
comm⇒\\≗flip-// : Commutative _∙_ → ∀ x y → x \\ y ≈ y // x
261+
⁻¹-anti-homo-// : (x // y) ⁻¹ ≈ y // x
262+
⁻¹-anti-homo-\\ : (x \\ y) ⁻¹ ≈ y \\ x
256263
```
257264

258265
* In `Algebra.Properties.Loop`:

src/Algebra/Properties/AbelianGroup.agda

+3
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,9 @@ open import Algebra.Properties.Group group public
2323
------------------------------------------------------------------------
2424
-- Properties of abelian groups
2525

26+
⁻¹-anti-homo‿- : x y (x - y) ⁻¹ ≈ y - x
27+
⁻¹-anti-homo‿- = ⁻¹-anti-homo-//
28+
2629
xyx⁻¹≈y : x y x ∙ y ∙ x ⁻¹ ≈ y
2730
xyx⁻¹≈y x y = begin
2831
x ∙ y ∙ x ⁻¹ ≈⟨ ∙-congʳ $ comm _ _ ⟩

src/Algebra/Properties/Group.agda

+16
Original file line numberDiff line numberDiff line change
@@ -126,6 +126,22 @@ inverseʳ-unique x y eq = trans (y≈x\\z x y ε eq) (identityʳ _)
126126
(x ∙ y) ∙ y ⁻¹ ∙ x ⁻¹ ≈⟨ assoc (x ∙ y) (y ⁻¹) (x ⁻¹) ⟩
127127
x ∙ y ∙ (y ⁻¹ ∙ x ⁻¹) ∎
128128

129+
⁻¹-anti-homo-// : x y (x // y) ⁻¹ ≈ y // x
130+
⁻¹-anti-homo-// x y = begin
131+
(x // y) ⁻¹ ≡⟨⟩
132+
(x ∙ y ⁻¹) ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ x (y ⁻¹) ⟩
133+
(y ⁻¹) ⁻¹ ∙ x ⁻¹ ≈⟨ ∙-congʳ (⁻¹-involutive y) ⟩
134+
y ∙ x ⁻¹ ≡⟨⟩
135+
y // x ∎
136+
137+
⁻¹-anti-homo-\\ : x y (x \\ y) ⁻¹ ≈ y \\ x
138+
⁻¹-anti-homo-\\ x y = begin
139+
(x \\ y) ⁻¹ ≡⟨⟩
140+
(x ⁻¹ ∙ y) ⁻¹ ≈⟨ ⁻¹-anti-homo-∙ (x ⁻¹) y ⟩
141+
y ⁻¹ ∙ (x ⁻¹) ⁻¹ ≈⟨ ∙-congˡ (⁻¹-involutive x) ⟩
142+
y ⁻¹ ∙ x ≡⟨⟩
143+
y \\ x ∎
144+
129145
\\≗flip-//⇒comm : ( x y x \\ y ≈ y // x) Commutative _∙_
130146
\\≗flip-//⇒comm \\≗//ᵒ x y = begin
131147
x ∙ y ≈⟨ ∙-congˡ (//-rightDividesˡ x y) ⟨

0 commit comments

Comments
 (0)