-
Notifications
You must be signed in to change notification settings - Fork 242
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Nagata's "idealization of a module" construction (#2244)
* Nagata's construction * removed redundant `zero` * first round of Jacques' review comments * proved the additional properties * some of Matthew's suggestions, plus more vertical whitespace, less horizontal; more comments * Matthew's suggestion: using `private` modules * Matthew's suggestion: lifting out left-/right- sublemmas * standardised names, as far as possible * Matthew's suggestion: lifting out left-/right- sublemmas * fixed constraint problem with ambiguous symbol; renamed ideal lemmas * renamed module * renamed module in `CHANGELOG` * added generalised annihilation lemma * typos * use correct rexported names * now as a paramterised module instead * or did you intend this? * fix whitespace * aligned one step of reasoning * more re-alignment of reasoning steps * more re-alignment of reasoning steps * Matthew's review comments * blanklines
- Loading branch information
1 parent
6d41bf1
commit 079b98c
Showing
2 changed files
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
------------------------------------------------------------------------ | ||
-- The Agda standard library | ||
-- | ||
-- The non-commutative analogue of Nagata's construction of | ||
-- the "idealization of a module", (Local Rings, 1962; Wiley) | ||
-- defined here on R-R-*bi*modules M over a ring R, as used in | ||
-- "Forward- or reverse-mode automatic differentiation: What's the difference?" | ||
-- (Van den Berg, Schrijvers, McKinna, Vandenbroucke; | ||
-- Science of Computer Programming, Vol. 234, January 2024 | ||
-- https://doi.org/10.1016/j.scico.2023.103010) | ||
-- | ||
-- The construction N =def R ⋉ M , for which there is unfortunately | ||
-- no consistent notation in the literature, consists of: | ||
-- * carrier: pairs |R| × |M| | ||
-- * with additive structure that of the direct sum R ⊕ M _of modules_ | ||
-- * but with multiplication _*_ such that M forms an _ideal_ of N | ||
-- * moreover satisfying 'm * m ≈ 0' for every m ∈ M ⊆ N | ||
-- | ||
-- The fundamental lemma (proved here) is that N, in fact, defines a Ring: | ||
-- this ring is essentially the 'ring of dual numbers' construction R[M] | ||
-- (Clifford, 1874; generalised!) for an ideal M, and thus the synthetic/algebraic | ||
-- analogue of the tangent space of M (considered as a 'vector space' over R) | ||
-- in differential geometry, hence its application to Automatic Differentiation. | ||
-- | ||
-- Nagata's more fundamental insight (not yet shown here) is that | ||
-- the lattice of R-submodules of M is in order-isomorphism with | ||
-- the lattice of _ideals_ of R ⋉ M , and hence that the study of | ||
-- modules can be reduced to that of ideals of a ring, and vice versa. | ||
-- | ||
------------------------------------------------------------------------ | ||
|
||
{-# OPTIONS --cubical-compatible --safe #-} | ||
|
||
open import Algebra.Bundles using (AbelianGroup; Ring) | ||
open import Algebra.Module.Bundles using (Bimodule) | ||
|
||
module Algebra.Module.Construct.Idealization | ||
{r ℓr m ℓm} (ring : Ring r ℓr) (bimodule : Bimodule ring ring m ℓm) where | ||
|
||
open import Algebra.Core | ||
import Algebra.Consequences.Setoid as Consequences | ||
import Algebra.Definitions as Definitions | ||
import Algebra.Module.Construct.DirectProduct as DirectProduct | ||
import Algebra.Module.Construct.TensorUnit as TensorUnit | ||
open import Algebra.Structures using (IsAbelianGroup; IsRing) | ||
open import Data.Product using (_,_; ∃-syntax) | ||
open import Level using (Level; _⊔_) | ||
open import Relation.Binary using (Rel; Setoid; IsEquivalence) | ||
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning | ||
|
||
------------------------------------------------------------------------ | ||
-- Definitions | ||
|
||
private | ||
open module R = Ring ring | ||
using () | ||
renaming (Carrier to R) | ||
|
||
open module M = Bimodule bimodule | ||
renaming (Carrierᴹ to M) | ||
|
||
+ᴹ-middleFour = Consequences.comm∧assoc⇒middleFour ≈ᴹ-setoid +ᴹ-cong +ᴹ-comm +ᴹ-assoc | ||
|
||
open module N = Bimodule (DirectProduct.bimodule TensorUnit.bimodule bimodule) | ||
using () | ||
renaming ( Carrierᴹ to N | ||
; _≈ᴹ_ to _≈_ | ||
; _+ᴹ_ to _+_ | ||
; 0ᴹ to 0# | ||
; -ᴹ_ to -_ | ||
; +ᴹ-isAbelianGroup to +-isAbelianGroup | ||
) | ||
|
||
open AbelianGroup M.+ᴹ-abelianGroup hiding (_≈_) | ||
open ≈-Reasoning ≈ᴹ-setoid | ||
open Definitions _≈_ | ||
|
||
-- Injections ι from the components of the direct sum | ||
-- ιᴹ in fact exhibits M as an _ideal_ of R ⋉ M (see below) | ||
ιᴿ : R → N | ||
ιᴿ r = r , 0ᴹ | ||
|
||
ιᴹ : M → N | ||
ιᴹ m = R.0# , m | ||
|
||
-- Multiplicative unit | ||
|
||
1# : N | ||
1# = ιᴿ R.1# | ||
|
||
-- Multiplication | ||
|
||
infixl 7 _*_ | ||
|
||
_*_ : Op₂ N | ||
(r₁ , m₁) * (r₂ , m₂) = r₁ R.* r₂ , r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂ | ||
|
||
-- Properties: because we work in the direct sum, every proof has | ||
-- * an 'R'-component, which inherits directly from R, and | ||
-- * an 'M'-component, where the work happens | ||
|
||
*-cong : Congruent₂ _*_ | ||
*-cong (r₁ , m₁) (r₂ , m₂) = R.*-cong r₁ r₂ , +ᴹ-cong (*ₗ-cong r₁ m₂) (*ᵣ-cong m₁ r₂) | ||
|
||
*-identityˡ : LeftIdentity 1# _*_ | ||
*-identityˡ (r , m) = R.*-identityˡ r , (begin | ||
R.1# *ₗ m +ᴹ 0ᴹ *ᵣ r ≈⟨ +ᴹ-cong (*ₗ-identityˡ m) (*ᵣ-zeroˡ r) ⟩ | ||
m +ᴹ 0ᴹ ≈⟨ +ᴹ-identityʳ m ⟩ | ||
m ∎) | ||
|
||
*-identityʳ : RightIdentity 1# _*_ | ||
*-identityʳ (r , m) = R.*-identityʳ r , (begin | ||
r *ₗ 0ᴹ +ᴹ m *ᵣ R.1# ≈⟨ +ᴹ-cong (*ₗ-zeroʳ r) (*ᵣ-identityʳ m) ⟩ | ||
0ᴹ +ᴹ m ≈⟨ +ᴹ-identityˡ m ⟩ | ||
m ∎) | ||
|
||
*-identity : Identity 1# _*_ | ||
*-identity = *-identityˡ , *-identityʳ | ||
|
||
*-assoc : Associative _*_ | ||
*-assoc (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.*-assoc r₁ r₂ r₃ , (begin | ||
(r₁ R.* r₂) *ₗ m₃ +ᴹ (r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) *ᵣ r₃ | ||
≈⟨ +ᴹ-cong (*ₗ-assoc r₁ r₂ m₃) (*ᵣ-distribʳ r₃ (r₁ *ₗ m₂) (m₁ *ᵣ r₂)) ⟩ | ||
r₁ *ₗ (r₂ *ₗ m₃) +ᴹ ((r₁ *ₗ m₂) *ᵣ r₃ +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃) | ||
≈⟨ +ᴹ-congˡ (+ᴹ-congʳ (*ₗ-*ᵣ-assoc r₁ m₂ r₃)) ⟩ | ||
r₁ *ₗ (r₂ *ₗ m₃) +ᴹ (r₁ *ₗ (m₂ *ᵣ r₃) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃) | ||
≈⟨ +ᴹ-assoc (r₁ *ₗ (r₂ *ₗ m₃)) (r₁ *ₗ (m₂ *ᵣ r₃)) ((m₁ *ᵣ r₂) *ᵣ r₃) ⟨ | ||
(r₁ *ₗ (r₂ *ₗ m₃) +ᴹ r₁ *ₗ (m₂ *ᵣ r₃)) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃ | ||
≈⟨ +ᴹ-cong (≈ᴹ-sym (*ₗ-distribˡ r₁ (r₂ *ₗ m₃) (m₂ *ᵣ r₃))) (*ᵣ-assoc m₁ r₂ r₃) ⟩ | ||
r₁ *ₗ (r₂ *ₗ m₃ +ᴹ m₂ *ᵣ r₃) +ᴹ m₁ *ᵣ (r₂ R.* r₃) ∎) | ||
|
||
distribˡ : _*_ DistributesOverˡ _+_ | ||
distribˡ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribˡ r₁ r₂ r₃ , (begin | ||
r₁ *ₗ (m₂ +ᴹ m₃) +ᴹ m₁ *ᵣ (r₂ R.+ r₃) | ||
≈⟨ +ᴹ-cong (*ₗ-distribˡ r₁ m₂ m₃) (*ᵣ-distribˡ m₁ r₂ r₃) ⟩ | ||
(r₁ *ₗ m₂ +ᴹ r₁ *ₗ m₃) +ᴹ (m₁ *ᵣ r₂ +ᴹ m₁ *ᵣ r₃) | ||
≈⟨ +ᴹ-middleFour (r₁ *ₗ m₂) (r₁ *ₗ m₃) (m₁ *ᵣ r₂) (m₁ *ᵣ r₃) ⟩ | ||
(r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) +ᴹ (r₁ *ₗ m₃ +ᴹ m₁ *ᵣ r₃) ∎) | ||
|
||
|
||
distribʳ : _*_ DistributesOverʳ _+_ | ||
distribʳ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribʳ r₁ r₂ r₃ , (begin | ||
(r₂ R.+ r₃) *ₗ m₁ +ᴹ (m₂ +ᴹ m₃) *ᵣ r₁ | ||
≈⟨ +ᴹ-cong (*ₗ-distribʳ m₁ r₂ r₃) (*ᵣ-distribʳ r₁ m₂ m₃) ⟩ | ||
(r₂ *ₗ m₁ +ᴹ r₃ *ₗ m₁) +ᴹ (m₂ *ᵣ r₁ +ᴹ m₃ *ᵣ r₁) | ||
≈⟨ +ᴹ-middleFour (r₂ *ₗ m₁) (r₃ *ₗ m₁) (m₂ *ᵣ r₁) (m₃ *ᵣ r₁) ⟩ | ||
(r₂ *ₗ m₁ +ᴹ m₂ *ᵣ r₁) +ᴹ (r₃ *ₗ m₁ +ᴹ m₃ *ᵣ r₁) ∎) | ||
|
||
distrib : _*_ DistributesOver _+_ | ||
distrib = distribˡ , distribʳ | ||
|
||
|
||
------------------------------------------------------------------------ | ||
-- The Fundamental Lemma | ||
|
||
-- Structure | ||
|
||
isRingᴺ : IsRing _≈_ _+_ _*_ -_ 0# 1# | ||
isRingᴺ = record | ||
{ +-isAbelianGroup = +-isAbelianGroup | ||
; *-cong = *-cong | ||
; *-assoc = *-assoc | ||
; *-identity = *-identity | ||
; distrib = distrib | ||
} | ||
|
||
-- Bundle | ||
|
||
ringᴺ : Ring (r ⊔ m) (ℓr ⊔ ℓm) | ||
ringᴺ = record { isRing = isRingᴺ } | ||
|
||
------------------------------------------------------------------------ | ||
-- M is an ideal of R ⋉ M satisfying m₁ * m₂ ≈ 0# | ||
|
||
ιᴹ-idealˡ : (n : N) (m : M) → ∃[ n*m ] n * ιᴹ m ≈ ιᴹ n*m | ||
ιᴹ-idealˡ n@(r , _) m = _ , R.zeroʳ r , ≈ᴹ-refl | ||
|
||
ιᴹ-idealʳ : (m : M) (n : N) → ∃[ m*n ] ιᴹ m * n ≈ ιᴹ m*n | ||
ιᴹ-idealʳ m n@(r , _) = _ , R.zeroˡ r , ≈ᴹ-refl | ||
|
||
*-annihilates-ιᴹ : (m₁ m₂ : M) → ιᴹ m₁ * ιᴹ m₂ ≈ 0# | ||
*-annihilates-ιᴹ m₁ m₂ = R.zeroˡ R.0# , (begin | ||
R.0# *ₗ m₂ +ᴹ m₁ *ᵣ R.0# ≈⟨ +ᴹ-cong (*ₗ-zeroˡ m₂) (*ᵣ-zeroʳ m₁) ⟩ | ||
0ᴹ +ᴹ 0ᴹ ≈⟨ +ᴹ-identityˡ 0ᴹ ⟩ | ||
0ᴹ ∎) | ||
|
||
m*m≈0 : (m : M) → ιᴹ m * ιᴹ m ≈ 0# | ||
m*m≈0 m = *-annihilates-ιᴹ m m | ||
|
||
------------------------------------------------------------------------ | ||
-- Infix notation for when opening the module unparameterised | ||
|
||
infixl 4 _⋉_ | ||
_⋉_ = ringᴺ |