Skip to content

Commit

Permalink
Nagata's "idealization of a module" construction (#2244)
Browse files Browse the repository at this point in the history
* Nagata's construction

* removed redundant `zero`

* first round of Jacques' review comments

* proved the additional properties

* some of Matthew's suggestions, plus more vertical whitespace, less horizontal; more comments

* Matthew's suggestion: using `private` modules

* Matthew's suggestion: lifting out left-/right- sublemmas

* standardised names, as far as possible

* Matthew's suggestion: lifting out left-/right- sublemmas

* fixed constraint problem with ambiguous symbol; renamed ideal lemmas

* renamed module

* renamed module in `CHANGELOG`

* added generalised annihilation lemma

* typos

* use correct rexported names

* now as a paramterised module instead

* or did you intend this?

* fix whitespace

* aligned one step of reasoning

* more re-alignment of reasoning steps

* more re-alignment of reasoning steps

* Matthew's review comments

* blanklines
  • Loading branch information
jamesmckinna authored Feb 25, 2024
1 parent 6d41bf1 commit 079b98c
Show file tree
Hide file tree
Showing 2 changed files with 199 additions and 0 deletions.
5 changes: 5 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,11 @@ New modules

* `Algebra.Module.Bundles.Raw`: raw bundles for module-like algebraic structures

* Nagata's construction of the "idealization of a module":
```agda
Algebra.Module.Construct.Idealization
```

Additions to existing modules
-----------------------------

Expand Down
194 changes: 194 additions & 0 deletions src/Algebra/Module/Construct/Idealization.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,194 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- The non-commutative analogue of Nagata's construction of
-- the "idealization of a module", (Local Rings, 1962; Wiley)
-- defined here on R-R-*bi*modules M over a ring R, as used in
-- "Forward- or reverse-mode automatic differentiation: What's the difference?"
-- (Van den Berg, Schrijvers, McKinna, Vandenbroucke;
-- Science of Computer Programming, Vol. 234, January 2024
-- https://doi.org/10.1016/j.scico.2023.103010)
--
-- The construction N =def R ⋉ M , for which there is unfortunately
-- no consistent notation in the literature, consists of:
-- * carrier: pairs |R| × |M|
-- * with additive structure that of the direct sum R ⊕ M _of modules_
-- * but with multiplication _*_ such that M forms an _ideal_ of N
-- * moreover satisfying 'm * m ≈ 0' for every m ∈ M ⊆ N
--
-- The fundamental lemma (proved here) is that N, in fact, defines a Ring:
-- this ring is essentially the 'ring of dual numbers' construction R[M]
-- (Clifford, 1874; generalised!) for an ideal M, and thus the synthetic/algebraic
-- analogue of the tangent space of M (considered as a 'vector space' over R)
-- in differential geometry, hence its application to Automatic Differentiation.
--
-- Nagata's more fundamental insight (not yet shown here) is that
-- the lattice of R-submodules of M is in order-isomorphism with
-- the lattice of _ideals_ of R ⋉ M , and hence that the study of
-- modules can be reduced to that of ideals of a ring, and vice versa.
--
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Bundles using (AbelianGroup; Ring)
open import Algebra.Module.Bundles using (Bimodule)

module Algebra.Module.Construct.Idealization
{r ℓr m ℓm} (ring : Ring r ℓr) (bimodule : Bimodule ring ring m ℓm) where

open import Algebra.Core
import Algebra.Consequences.Setoid as Consequences
import Algebra.Definitions as Definitions
import Algebra.Module.Construct.DirectProduct as DirectProduct
import Algebra.Module.Construct.TensorUnit as TensorUnit
open import Algebra.Structures using (IsAbelianGroup; IsRing)
open import Data.Product using (_,_; ∃-syntax)
open import Level using (Level; _⊔_)
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning

------------------------------------------------------------------------
-- Definitions

private
open module R = Ring ring
using ()
renaming (Carrier to R)

open module M = Bimodule bimodule
renaming (Carrierᴹ to M)

+ᴹ-middleFour = Consequences.comm∧assoc⇒middleFour ≈ᴹ-setoid +ᴹ-cong +ᴹ-comm +ᴹ-assoc

open module N = Bimodule (DirectProduct.bimodule TensorUnit.bimodule bimodule)
using ()
renaming ( Carrierᴹ to N
; _≈ᴹ_ to _≈_
; _+ᴹ_ to _+_
; 0ᴹ to 0#
; -ᴹ_ to -_
; +ᴹ-isAbelianGroup to +-isAbelianGroup
)

open AbelianGroup M.+ᴹ-abelianGroup hiding (_≈_)
open ≈-Reasoning ≈ᴹ-setoid
open Definitions _≈_

-- Injections ι from the components of the direct sum
-- ιᴹ in fact exhibits M as an _ideal_ of R ⋉ M (see below)
ιᴿ : R N
ιᴿ r = r , 0ᴹ

ιᴹ : M N
ιᴹ m = R.0# , m

-- Multiplicative unit

1# : N
1# = ιᴿ R.1#

-- Multiplication

infixl 7 _*_

_*_ : Op₂ N
(r₁ , m₁) * (r₂ , m₂) = r₁ R.* r₂ , r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂

-- Properties: because we work in the direct sum, every proof has
-- * an 'R'-component, which inherits directly from R, and
-- * an 'M'-component, where the work happens

*-cong : Congruent₂ _*_
*-cong (r₁ , m₁) (r₂ , m₂) = R.*-cong r₁ r₂ , +ᴹ-cong (*ₗ-cong r₁ m₂) (*ᵣ-cong m₁ r₂)

*-identityˡ : LeftIdentity 1# _*_
*-identityˡ (r , m) = R.*-identityˡ r , (begin
R.1# *ₗ m +ᴹ 0ᴹ *ᵣ r ≈⟨ +ᴹ-cong (*ₗ-identityˡ m) (*ᵣ-zeroˡ r) ⟩
m +ᴹ 0ᴹ ≈⟨ +ᴹ-identityʳ m ⟩
m ∎)

*-identityʳ : RightIdentity 1# _*_
*-identityʳ (r , m) = R.*-identityʳ r , (begin
r *ₗ 0ᴹ +ᴹ m *ᵣ R.1# ≈⟨ +ᴹ-cong (*ₗ-zeroʳ r) (*ᵣ-identityʳ m) ⟩
0ᴹ +ᴹ m ≈⟨ +ᴹ-identityˡ m ⟩
m ∎)

*-identity : Identity 1# _*_
*-identity = *-identityˡ , *-identityʳ

*-assoc : Associative _*_
*-assoc (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.*-assoc r₁ r₂ r₃ , (begin
(r₁ R.* r₂) *ₗ m₃ +ᴹ (r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) *ᵣ r₃
≈⟨ +ᴹ-cong (*ₗ-assoc r₁ r₂ m₃) (*ᵣ-distribʳ r₃ (r₁ *ₗ m₂) (m₁ *ᵣ r₂)) ⟩
r₁ *ₗ (r₂ *ₗ m₃) +ᴹ ((r₁ *ₗ m₂) *ᵣ r₃ +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃)
≈⟨ +ᴹ-congˡ (+ᴹ-congʳ (*ₗ-*ᵣ-assoc r₁ m₂ r₃)) ⟩
r₁ *ₗ (r₂ *ₗ m₃) +ᴹ (r₁ *ₗ (m₂ *ᵣ r₃) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃)
≈⟨ +ᴹ-assoc (r₁ *ₗ (r₂ *ₗ m₃)) (r₁ *ₗ (m₂ *ᵣ r₃)) ((m₁ *ᵣ r₂) *ᵣ r₃) ⟨
(r₁ *ₗ (r₂ *ₗ m₃) +ᴹ r₁ *ₗ (m₂ *ᵣ r₃)) +ᴹ (m₁ *ᵣ r₂) *ᵣ r₃
≈⟨ +ᴹ-cong (≈ᴹ-sym (*ₗ-distribˡ r₁ (r₂ *ₗ m₃) (m₂ *ᵣ r₃))) (*ᵣ-assoc m₁ r₂ r₃) ⟩
r₁ *ₗ (r₂ *ₗ m₃ +ᴹ m₂ *ᵣ r₃) +ᴹ m₁ *ᵣ (r₂ R.* r₃) ∎)

distribˡ : _*_ DistributesOverˡ _+_
distribˡ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribˡ r₁ r₂ r₃ , (begin
r₁ *ₗ (m₂ +ᴹ m₃) +ᴹ m₁ *ᵣ (r₂ R.+ r₃)
≈⟨ +ᴹ-cong (*ₗ-distribˡ r₁ m₂ m₃) (*ᵣ-distribˡ m₁ r₂ r₃) ⟩
(r₁ *ₗ m₂ +ᴹ r₁ *ₗ m₃) +ᴹ (m₁ *ᵣ r₂ +ᴹ m₁ *ᵣ r₃)
≈⟨ +ᴹ-middleFour (r₁ *ₗ m₂) (r₁ *ₗ m₃) (m₁ *ᵣ r₂) (m₁ *ᵣ r₃) ⟩
(r₁ *ₗ m₂ +ᴹ m₁ *ᵣ r₂) +ᴹ (r₁ *ₗ m₃ +ᴹ m₁ *ᵣ r₃) ∎)


distribʳ : _*_ DistributesOverʳ _+_
distribʳ (r₁ , m₁) (r₂ , m₂) (r₃ , m₃) = R.distribʳ r₁ r₂ r₃ , (begin
(r₂ R.+ r₃) *ₗ m₁ +ᴹ (m₂ +ᴹ m₃) *ᵣ r₁
≈⟨ +ᴹ-cong (*ₗ-distribʳ m₁ r₂ r₃) (*ᵣ-distribʳ r₁ m₂ m₃) ⟩
(r₂ *ₗ m₁ +ᴹ r₃ *ₗ m₁) +ᴹ (m₂ *ᵣ r₁ +ᴹ m₃ *ᵣ r₁)
≈⟨ +ᴹ-middleFour (r₂ *ₗ m₁) (r₃ *ₗ m₁) (m₂ *ᵣ r₁) (m₃ *ᵣ r₁) ⟩
(r₂ *ₗ m₁ +ᴹ m₂ *ᵣ r₁) +ᴹ (r₃ *ₗ m₁ +ᴹ m₃ *ᵣ r₁) ∎)

distrib : _*_ DistributesOver _+_
distrib = distribˡ , distribʳ


------------------------------------------------------------------------
-- The Fundamental Lemma

-- Structure

isRingᴺ : IsRing _≈_ _+_ _*_ -_ 0# 1#
isRingᴺ = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-cong = *-cong
; *-assoc = *-assoc
; *-identity = *-identity
; distrib = distrib
}

-- Bundle

ringᴺ : Ring (r ⊔ m) (ℓr ⊔ ℓm)
ringᴺ = record { isRing = isRingᴺ }

------------------------------------------------------------------------
-- M is an ideal of R ⋉ M satisfying m₁ * m₂ ≈ 0#

ιᴹ-idealˡ : (n : N) (m : M) ∃[ n*m ] n * ιᴹ m ≈ ιᴹ n*m
ιᴹ-idealˡ n@(r , _) m = _ , R.zeroʳ r , ≈ᴹ-refl

ιᴹ-idealʳ : (m : M) (n : N) ∃[ m*n ] ιᴹ m * n ≈ ιᴹ m*n
ιᴹ-idealʳ m n@(r , _) = _ , R.zeroˡ r , ≈ᴹ-refl

*-annihilates-ιᴹ : (m₁ m₂ : M) ιᴹ m₁ * ιᴹ m₂ ≈ 0#
*-annihilates-ιᴹ m₁ m₂ = R.zeroˡ R.0# , (begin
R.0# *ₗ m₂ +ᴹ m₁ *ᵣ R.0# ≈⟨ +ᴹ-cong (*ₗ-zeroˡ m₂) (*ᵣ-zeroʳ m₁) ⟩
0ᴹ +ᴹ 0ᴹ ≈⟨ +ᴹ-identityˡ 0ᴹ ⟩
0ᴹ ∎)

m*m≈0 : (m : M) ιᴹ m * ιᴹ m ≈ 0#
m*m≈0 m = *-annihilates-ιᴹ m m

------------------------------------------------------------------------
-- Infix notation for when opening the module unparameterised

infixl 4 _⋉_
_⋉_ = ringᴺ

0 comments on commit 079b98c

Please sign in to comment.