-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0_read_data.R
32 lines (29 loc) · 1.44 KB
/
0_read_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# 0_read_data.R
# get data from REDCap
# May 2019
library(dplyr)
library(stringr)
# run the data processing file that was automatically generated from REDCap
setwd('data')
source('BMJOpenBadges_R_2019-05-24_1042.r')
setwd('..')
## tidy data
# convert dates
# convert data sharing statements
# convert times
data = mutate(data,
opt_in_date = as.Date(as.character(opt_in_date)),
qut_recruitment_date = as.Date(as.character(qut_recruitment_date)),
time_check = as.numeric(as.character(time_check)),
data_sharing_statement_verbatim_prequt = as.character(data_sharing_statement_verbatim_prequt),
data_sharing_statement_verbatim_postqut = as.character(data_sharing_statement_verbatim_postqut)
)
## process words in the final data sharing statement
# count the number of words
data = mutate(data,
data_sharing_statement_verbatim_postqut = str_replace_all(string=data_sharing_statement_verbatim_postqut, pattern=' ', replacement = ' '), # remove any double spaces
n.words = str_count(string=data_sharing_statement_verbatim_postqut, pattern=' '), # count spaces
n.words = ifelse(n.words==0, 0, n.words+1)) # add missing word (from counting spaces) if result is non zero
# save
data = dplyr::select(data, -'corresponding_author', -author_email) # remove identifying information
save(data, file='data/AnalysisReady.RData')