-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtree_traversal.v
873 lines (719 loc) · 26.2 KB
/
tree_traversal.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat div seq.
From mathcomp Require Import choice fintype prime tuple finfun finset bigop.
Require FunctionalExtensionality Wf_nat Recdef.
(** * Basic generic theories to deal with compact data structures *)
(** OUTLINE
0. Section seq_ext
1. definition of the type of indices [1,n]
Module idx, Section mapping, Section idx_prop, Definition tacc
2. Section tree
3. Section valid_position.
4. Section encode_decode_gentree.
5. Section forest.
6. Section forest_eqType.
7. Section level_order_traversal.
8. Section mzip.
9. Section lo_traversal_st.
10. Section binary_search.
11. Section bfs.
*)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section seq_ext.
Variable T : Type.
Implicit Type s : seq T.
Lemma take_take : forall s a b, a <= b -> take a (take b s) = take a s.
Proof. by elim => // h t H [*|a[//|b] ab]; rewrite ?take0 // !take_cons H. Qed.
Lemma take_nseq B m n (a : B) : take m (nseq n a) = nseq (minn m n) a.
Proof. by elim: m n => [|m IH] [|n] //=; rewrite minnSS IH. Qed.
Lemma drop_drop : forall s a b, drop a (drop b s) = drop (a + b) s.
Proof. by elim => // ?? H [*|a[|b]]; rewrite ?(drop0,addn0) // addnS /= -H. Qed.
Lemma size_reshape r s : size (reshape r s) = size r.
Proof. by elim: r s => // h t IH s /=; rewrite IH. Qed.
Definition shape_dir n s : seq (seq T) := reshape (nseq (size s %/ n) n) s.
Lemma reshape_nseq_drop' n s b a :
reshape (nseq b n) (drop (a * n) s) =
[seq take n (drop (x * n) s) | x <- iota a b].
Proof. elim: b s a => [ //| b IH s a /=]; by rewrite -IH mulSn drop_drop. Qed.
Lemma reshape_nseq_drop n s b :
reshape (nseq b n) s = [seq take n (drop (x * n) s) | x <- iota 0 b].
Proof. move: (@reshape_nseq_drop' n s b 0); by rewrite drop0. Qed.
Lemma foldr1_mulr (e : T) (M : Monoid.law e) l m :
M (foldr M e l) m = foldr M m l.
Proof.
elim: l => [|a l IH] /=.
by rewrite Monoid.mul1m.
by rewrite -Monoid.mulmA IH.
Qed.
Lemma eq_in_foldr (T1 : eqType) T2 (f1 f2 : T1 -> T2 -> T2) (s : seq T1) a :
{in s, f1 =2 f2} -> foldr f1 a s = foldr f2 a s.
Proof.
elim: s => //= t s IH Hs.
rewrite IH ?Hs ?mem_head // => x Hx y.
by rewrite Hs // inE Hx orbT.
Qed.
End seq_ext.
Module idx.
Record t (n : nat) : Type := mkt {
i :> 'I_n.+1 ;
i0 : i != ord0
}.
End idx.
Notation "[1, n ]" := (@idx.t n)
(at level 8, n at level 2, format "[1, n ]").
Lemma idx_ltn0 (n : nat) (y : [1,n]) : 0 < idx.i y.
Proof. by rewrite lt0n; exact: idx.i0. Qed.
Hint Resolve idx_ltn0 : core.
Lemma idx_leq (n : nat) (y : [1,n]) : idx.i y <= n.
Proof. case: y => //= y _; by rewrite -ltnS. Qed.
Coercion idx_coercion (n : nat) := @idx.i n.
Canonical idx_subType (n : nat) := [subType for @idx.i n].
Definition idx_eqMixin (n : nat) := Eval hnf in [eqMixin of [1,n] by <:].
Canonical idx_eqType (n : nat) := Eval hnf in EqType [1,n] (idx_eqMixin n) .
Definition idx_choiceMixin (n : nat) := [choiceMixin of [1,n] by <:].
Canonical idx_choiceType (n : nat) := Eval hnf in ChoiceType [1,n] (idx_choiceMixin n).
Definition idx_countMixin (n : nat) := [countMixin of [1,n] by <:].
Canonical idx_countType (n : nat) := Eval hnf in CountType [1,n] (idx_countMixin n).
Canonical idx_subCountType (n : nat) := [subCountType of [1,n]].
Definition idx_finMixin (n : nat) := Eval hnf in [finMixin of [1,n] by <:].
Canonical idx_finType (n : nat) := Eval hnf in FinType [1,n] (idx_finMixin n).
Canonical idx_subFinType (n : nat) := Eval hnf in [subFinType of [1,n]].
Section mapping.
Definition ord_of' (n : nat) (i : @idx.t n) : 'I_n.
refine (@Ordinal _ i.-1 _).
rewrite prednK //.
exact: (leq_trans (ltn_ord i) (ltnSn _)).
Defined.
Definition ord_of (n : nat) : {ffun (@idx.t n) -> 'I_n} := [ffun x => ord_of' x].
Definition of_ord' (n : nat) (i : 'I_n) : @idx.t n := @idx.mkt _ (lift ord0 i) isT.
Definition of_ord (n : nat) : {ffun 'I_n -> (@idx.t n)} := [ffun x => of_ord' x].
End mapping.
Section idx_prop.
Lemma ord_of_inj (n : nat) : injective (@ord_of n).
Proof.
move=> [i i0] [j j0] /(congr1 val) /= ij; apply/val_inj => /=; move: ij.
move/(congr1 S).
rewrite !ffunE /=; by rewrite !prednK // ?lt0n // => /ord_inj.
Qed.
Lemma ord_ofK (n : nat) : cancel (@ord_of n) (@of_ord n).
Proof.
move=> x.
apply/val_inj/val_inj => /=.
by rewrite /of_ord /ord_of !ffunE /of_ord' lift0 /= prednK // lt0n @idx.i0.
Qed.
Lemma of_ordK (n : nat) : cancel (@of_ord n) (@ord_of n).
Proof. move=> x; apply/val_inj => /=; by rewrite !ffunE. Qed.
Lemma of_ord_inj (n : nat) : injective (@of_ord n).
Proof. exact: (can_inj (@of_ordK n)). Qed.
Lemma card_idx (n : nat) : #| [finType of [1,n]] | = n.
Proof.
rewrite -[RHS](card_ord n) -!cardsT -[RHS](card_imset _ (@of_ord_inj n)).
apply: eq_card => i; rewrite !inE.
apply/esym/imsetP.
case: i => i i0.
have @i1 : i.-1 < n by rewrite prednK // ?lt0n // -ltnS.
exists (Ordinal i1) => //.
apply/val_inj/val_inj => /=.
by rewrite /of_ord ffunE /of_ord' lift0 /= prednK // lt0n.
Qed.
Lemma enum_10 : enum [finType of [1,0]] = [::].
Proof. apply/eqP; by rewrite -size_eq0 -cardE card_idx. Qed.
Lemma val_enum_idx n : map val (enum [finType of [1,n]]) = behead (enum 'I_n.+1).
Proof.
apply (inj_map val_inj).
rewrite -drop1 map_drop.
move: (val_enum_ord n.+1) => /(congr1 behead); rewrite -drop1 => ->.
apply (@eq_from_nth _ O).
by rewrite !size_map -drop1 size_drop size_iota subn1 /= -enumT -cardE card_idx.
move=> i.
rewrite !size_map -enumT -cardE card_idx => ni.
rewrite -drop1 nth_drop add1n /=; congr nth.
rewrite enumT /= unlock /= pmap_filter; last exact: insubK.
rewrite unlock /=.
set lhs := LHS.
have : O :: lhs = iota O n.+1.
rewrite {}/lhs {1}/ord_enum -{1}[in iota _ _](add1n n) iota_add add0n cat1s; congr cons.
rewrite /= /oapp insubT /= insubF //=.
set x := pmap _ _.
transitivity (filter predT (map val x)).
rewrite filter_map; congr (map val _).
apply: eq_in_filter => /= j.
rewrite mem_pmap => /mapP[/= m].
rewrite mem_iota add1n ltnS lt0n => /andP[m0 mn].
rewrite insubT /= => -[] -> /=; by rewrite insubT.
rewrite pmap_filter; last exact: insubK.
rewrite filter_predT.
transitivity (filter predT (iota 1 n)).
apply eq_in_filter => j.
rewrite mem_iota lt0n add1n ltnS => /andP[j0 jn]; by rewrite insubT.
by rewrite filter_predT.
rewrite -add1n iota_add -val_ord_enum /= -cat1s => /eqP.
rewrite eqseq_cat; last by rewrite size_map /= /ord_enum size_pmap /= addn0 insubT.
by case/andP => _ /eqP.
Qed.
Lemma nth_enum_idx n :
map (@idx.i _) (enum [finType of [1,n]]) = map (lift ord0) (enum [finType of 'I_n]).
Proof. rewrite val_enum_idx; by rewrite enum_ordS. Qed.
Lemma of_ord_enum n :
[seq (@of_ord n) i | i <- Finite.enum (ordinal_finType n)] =
Finite.enum (idx_finType n).
Proof.
destruct n as [|n].
rewrite -!enumT enum_10.
apply/eqP; by rewrite -size_eq0 size_map -cardE card_ord.
have x0 : @idx.t n.+1.
exists (lift ord0 ord0).
apply/negP => /eqP/(congr1 val) /= /esym.
apply/eqP; by rewrite neq_bump.
apply (@eq_from_nth _ x0) => /=.
by rewrite size_map // -enumT -cardE card_ord -enumT -cardE card_idx.
move=> i.
rewrite size_map => ni.
rewrite (nth_map ord0) //= /of_ord ffunE -!enumT.
apply val_inj => /=; apply/val_inj => /=.
rewrite nth_enum_ord; last first.
move: ni; by rewrite -enumT -cardE card_ord.
move: (nth_enum_idx n.+1).
rewrite -enumT -cardE card_ord in ni.
move/(congr1 (fun x : seq 'I__ => nth ord0 x i)).
rewrite (nth_map ord0) -?cardE ?card_ord //= (nth_map x0) -?cardE ?card_idx //= => ->.
by rewrite /= nth_enum_ord .
Qed.
End idx_prop.
Definition tacc (T : eqType) (n : nat) (B : n.-tuple T) (i : [1,n]) : T :=
tnth B (@ord_of n i).
Lemma taccE (T : eqType) b n (s : n.-tuple T) j : tacc s j = nth b s j.-1.
Proof. by rewrite /tacc (tnth_nth b) /ord_of ffunE. Qed.
(* trees with arbitrary finite branching *)
Section tree.
Variable A : Type.
Inductive tree := Node : A -> seq tree -> tree.
(* a leaf is a node with an empty list *)
(* induction principle assuming only Type *)
Lemma tree_ind_type (P : tree -> Prop) :
(forall a l, foldr (fun t => and (P t)) True l -> P (Node a l)) ->
forall t, P t.
Proof.
move=> indu; fix H 1.
elim => a l; apply indu.
elim: l => [|b l IH]; first by [].
split; [exact: H | exact IH].
Qed.
Definition children_of_node (t : tree) :=
let: Node _ l := t in l.
Definition label_of_node (t : tree) :=
let: Node l _ := t in l.
Lemma nodeK (t : tree) : Node (label_of_node t) (children_of_node t) = t.
Proof. by case: t. Qed.
Definition root (T : tree) : A := let: Node w _ := T in w.
(* enumerate nodes: depth-first, pre-order *)
Fixpoint nodes (t : tree) : seq A :=
let: Node a l := t in a :: flatten (map nodes l).
Definition number_of_nodes (t : tree) := size (nodes t).
Lemma number_of_nodes_gt0 (t : tree) : 0 < number_of_nodes t.
Proof. by case: t. Qed.
Lemma number_of_nodes_Node (t : tree) :
number_of_nodes t = (sumn (map number_of_nodes (children_of_node t))).+1.
Proof.
case: t => ? ?; by rewrite /number_of_nodes /= size_flatten /shape -map_comp.
Qed.
Definition forest := seq tree.
(* enumerate children: depth-first, pre-order *)
Fixpoint seq_of_tree (B : Type) (f : forest -> seq B) (t : tree) : seq B :=
let: Node _ l := t in f l ++ flatten (map (seq_of_tree f) l).
Fixpoint height (t : tree) : nat :=
let: Node _ l := t in (\max_(i <- map height l) i).+1.
Lemma height_gt0 (t : tree) : 0 < height t.
Proof. by case: t. Qed.
Fixpoint subtree (t : tree) (p : seq nat) : tree :=
match p with
| nil => t
| n :: p' =>
subtree (nth t (children_of_node t) n) p'
end.
Definition children (t : tree) (p : seq nat) :=
size (children_of_node (subtree t p)).
Definition child (p : seq nat) (n : nat) := rcons p n.
End tree.
Arguments children_of_node {A}.
Section valid_position.
Variable A : Type.
Implicit Types t : tree A.
Fixpoint valid_position t p :=
if p isn't n :: p' then true else
let l := children_of_node t in
(n < size l) && valid_position (nth t l n) p'.
Lemma valid_position_cons t a p :
valid_position t (a :: p) = let l := children_of_node t in
(a < size l) && valid_position (nth t l a) p.
Proof. by []. Qed.
Lemma valid_position_cat t p1 p2 :
valid_position t (p1 ++ p2) -> valid_position t p1.
Proof. elim: p1 t => //= p ps IH t /andP[H1 H2]; by rewrite H1 /= IH. Qed.
Lemma valid_position_rcons t p x :
valid_position t (rcons p x) -> valid_position t p.
Proof. by rewrite -cats1 => /valid_position_cat. Qed.
Lemma valid_position_take t p k :
valid_position t p -> valid_position t (take k p).
Proof. by rewrite -{1}(cat_take_drop k p) => /valid_position_cat. Qed.
Lemma valid_position_height t p : valid_position t p -> size p <= height t.
Proof.
elim: p t => [//|x p IH [a l]].
rewrite valid_position_cons /= ltnS => /andP[Hx HV].
rewrite big_map big_tnth (leq_trans (IH _ HV)) //.
by rewrite -(tnth_nth (Node a l) (in_tuple l) (Ordinal Hx)) leq_bigmax.
Qed.
Lemma valid_position_weaken a1 a2 l1 l2 p :
valid_position (Node a1 l1) p -> valid_position (Node a2 (l1 ++ l2)) p.
Proof.
case: p => //= a p; rewrite size_cat => /andP[al1]; rewrite ltn_addr //=.
by rewrite nth_cat al1 -(in_tupleE l1) (_ : a = Ordinal al1) // -!tnth_nth.
Qed.
Lemma valid_position_children (t : tree A) p x :
valid_position t (rcons p x) -> x < children t p.
Proof.
rewrite /children.
by elim: p t => [|n p IH] [a cl] //= /andP [Hn] // /IH.
Qed.
End valid_position.
Section encode_decode_gentree.
Variable A : Type.
Fixpoint encode_tree (t : tree A) : GenTree.tree A :=
match t with
| Node a [::] => GenTree.Leaf a
| Node a l => GenTree.Node O(*dummy*) (GenTree.Leaf a :: map encode_tree l)
end.
Fixpoint decode_tree (t : GenTree.tree A) : option (tree A) :=
match t with
| GenTree.Leaf a => Some (Node a [::])
| GenTree.Node _ (GenTree.Leaf h :: l) => Some (Node h (pmap decode_tree l))
| GenTree.Node _ _ => None
end.
Lemma pcancel_tree : pcancel encode_tree decode_tree.
Proof.
elim/tree_ind_type => a [//|b s /= [-> H2 /=]]; congr (Some (Node _ (_ :: _))).
elim: s H2 => // c s IH /= [-> K2 /=]; by rewrite IH.
Qed.
End encode_decode_gentree.
Definition tree_eqMixin (A : eqType) := PcanEqMixin (@pcancel_tree A).
Canonical tree_eqType (A : eqType) := Eval hnf in EqType _ (@tree_eqMixin A).
Definition tree_choiceMixin (A : choiceType) := PcanChoiceMixin (@pcancel_tree A).
Canonical tree_choiceType (A : choiceType) :=
Eval hnf in ChoiceType _ (@tree_choiceMixin A).
Definition tree_countMixin (A : countType) := PcanCountMixin (@pcancel_tree A).
Canonical tree_countType (A : countType) :=
Eval hnf in CountType _ (@tree_countMixin A).
Lemma height_Node (A : eqType) (v : A) l n :
height (Node v l) <= n.+1 -> forall t, t \in l -> height t <= n.
Proof.
rewrite /= ltnS => Hn t tl; rewrite (leq_trans _ Hn) // {Hn} big_map.
elim: l tl => // a b IH; rewrite inE => /orP[/eqP ->|/IH].
by rewrite big_cons leq_maxl.
rewrite big_cons leq_max => ->; by rewrite orbT.
Qed.
(* induction principle using eqType (and therefore \in) *)
Lemma tree_ind_eqType (A : eqType) (P : tree A -> Prop) :
(forall a l, (forall x, x \in l -> P x) -> P (Node a l)) ->
forall t, P t.
Proof.
move=> H; apply tree_ind_type => a s IH; apply H.
elim: s IH => // b s IH /= [Pb K] t.
by rewrite in_cons => /orP[/eqP -> //|]; apply IH.
Qed.
Section forest.
Variable A : Type.
Implicit Types s : forest A.
Definition labels_of_forest s : seq A := map (fun '(Node v' _) => v') s.
Definition children_of_forest' s : seq (forest A) := map children_of_node s.
Definition children_of_forest s : forest A := flatten (children_of_forest' s).
Lemma children_of_forest_nil : children_of_forest [::] = [::].
Proof. by []. Qed.
Lemma children_of_forest'_cat s1 s2 : flatten (children_of_forest' (s1 ++ s2)) =
flatten (children_of_forest' s1) ++ flatten (children_of_forest' s2).
Proof. by rewrite /children_of_forest' map_cat flatten_cat. Qed.
Lemma children_of_forest_cat s1 s2 :
children_of_forest (s1 ++ s2) = children_of_forest s1 ++ children_of_forest s2.
Proof.
by rewrite /children_of_forest /children_of_forest' map_cat flatten_cat.
Qed.
Lemma children_of_forest_cons a s :
children_of_forest (a :: s) = children_of_node a ++ children_of_forest s.
Proof. by []. Qed.
End forest.
Section forest_eqType.
Variable A : eqType.
Implicit Types s : forest A.
Lemma children_of_forest_height s n :
{in s, forall t, height t <= n.+1 } ->
{in children_of_forest s, forall t, height t <= n}.
Proof.
move=> H t /= /flattenP [s'] /mapP [t'] t's -> tt'.
move: (H t') => /(_ t's).
by rewrite -(nodeK t') => /height_Node/(_ _ tt').
Qed.
Lemma size_children_of_node_forest (t : tree A) l : t \in l ->
size (children_of_node t) <= size (children_of_forest l).
Proof.
elim: l t => // h l IH t.
rewrite children_of_forest_cons size_cat in_cons => /orP[/eqP ->|/IH].
by rewrite leq_addr.
by move/leq_trans => -> //; rewrite leq_addl.
Qed.
End forest_eqType.
Section level_order_traversal.
Variables (A B : Type) (f : tree A -> B).
(* n to be instantiated with max of map height l *)
Fixpoint lo_traversal' n (s : forest A) :=
if n is n'.+1 then
map f s ++ lo_traversal' n' (children_of_forest s)
else
[::].
Definition lo_traversal t := lo_traversal' (height t) [:: t].
End level_order_traversal.
Section mzip.
Import Monoid.Theory.
Variable (A : Type) (e : A) (M : Monoid.law e).
Fixpoint mzip (l r : seq A) {struct l} :=
match l, r with
| (l1::ls), (r1::rs) => (M l1 r1) :: mzip ls rs
| nil, s | s, nil => s
end.
Lemma mzipA : associative mzip.
Proof.
elim => [|lh lt IH] [|rh rt] [|sh st] //=.
by rewrite IH mulmA.
Qed.
Lemma mzip1s s : mzip [::] s = s.
Proof. by []. Qed.
Lemma mzips1 s : mzip s [::] = s.
Proof. by case: s. Qed.
Canonical mzip_monoid := Monoid.Law mzipA mzip1s mzips1.
Lemma flatten_mzipC h s1 s2 :
foldr M e (mzip (h :: s1) s2) = M h (foldr M e (mzip s2 s1)).
Proof.
elim: s2 h s1 => // h2 s2 IH h1 s1 /=.
rewrite -mulmA; congr (M h1).
case: s1 => //= {}h1 s1.
rewrite -mulmA -{}IH; by case: s2.
Qed.
Lemma foldr_bigE C (g : C -> A) cl :
foldr (M \o g) e cl = \big[M/e]_(i <- cl) g i.
Proof. by rewrite BigOp.bigopE. Qed.
End mzip.
Section lo_traversal_st.
Variables (A : eqType) (B : Type) (f : tree A -> B).
Implicit Types s : forest A.
Definition mzip_cat : Monoid.law [::] := mzip_monoid (cat_monoid B).
Fixpoint level_traversal t :=
[:: f t] :: foldr (mzip_cat \o level_traversal) nil (children_of_node t).
Definition lo_traversal_st t := flatten (level_traversal t).
Definition forest_traversal := foldr (mzip_cat \o level_traversal) nil.
Lemma level_traversal_forest t :
level_traversal t = forest_traversal [:: t].
Proof. by case: t. Qed.
Lemma level_traversalE t :
level_traversal t =
[:: f t] :: \big[mzip_cat/nil]_(i <- children_of_node t) level_traversal i.
Proof. rewrite -foldr_bigE; by case: t. Qed.
Lemma forest_traversalE' st s :
~~ nilp s ->
foldr (mzip_cat \o level_traversal) st s =
(map f s ++ head nil st) ::
foldr (mzip_cat \o level_traversal) (behead st) (children_of_forest s).
Proof.
elim: s => //= -[a cl] [|t s'] IH // _.
rewrite /children_of_forest /=.
case: {IH} st => [|h st]; rewrite !cats0 //=.
by rewrite -foldr_map foldr1_mulr foldr_map.
set s := t :: s' in IH *.
move/(_ isT): (IH) => ->.
rewrite children_of_forest_cons /= foldr_cat /=.
by rewrite -!(foldr_map level_traversal mzip_cat) foldr1_mulr.
Qed.
Lemma forest_traversalE s :
~~ nilp s ->
forest_traversal s = map f s :: forest_traversal (children_of_forest s).
Proof.
by move/(forest_traversalE' nil); rewrite /forest_traversal /= cats0 => ->.
Qed.
Theorem lo_traversal_stE t :
lo_traversal_st t = lo_traversal f t.
Proof.
rewrite /lo_traversal_st level_traversal_forest /lo_traversal.
set s := [:: t]; set h := height t.
have Hh : forall t : tree A, t \in s -> height t <= h.
by move=> t'; rewrite inE => /eqP ->.
elim: {t} h s Hh => //= [|h IH] s Hh.
by case: s Hh => // t w /(_ t (mem_head _ _)); rewrite leqNgt height_gt0.
rewrite -IH.
by case /boolP: (nilp s) => [/nilP | /forest_traversalE] ->.
by move=> t /flattenP [s'] /mapP [[a cl]] /Hh Ht -> /(height_Node Ht).
Qed.
Fixpoint level_traversal_cat (t : tree A) ss {struct t} :=
(f t :: head nil ss) ::
foldr level_traversal_cat (behead ss) (children_of_node t).
Definition lo_traversal_cat t := flatten (level_traversal_cat t [::]).
Lemma level_traversal_catE t ss :
mzip_cat (level_traversal t) ss = level_traversal_cat t ss.
Proof.
elim/tree_ind_eqType: t ss => [a cl] IH ss.
case: ss => [|s ss] /=; congr cons.
by apply /eq_in_foldr.
rewrite -foldr_map foldr1_mulr foldr_map; by apply /eq_in_foldr.
Qed.
Theorem lo_traversal_catE t : lo_traversal_cat t = lo_traversal_st t.
Proof. by rewrite /lo_traversal_cat -level_traversal_catE Monoid.mulm1. Qed.
End lo_traversal_st.
Section lo_traversal_examples.
Goal lo_traversal_st (@label_of_node _)
(Node 1 [:: Node 2 [:: Node 4 [::]]; Node 3 [::]]) = [:: 1; 2; 3; 4].
by [].
Abort.
Goal lo_traversal_cat (@label_of_node _)
(Node 1 [:: Node 2 [:: Node 4 [::]]; Node 3 [::]]) = [:: 1; 2; 3; 4].
by [].
Abort.
End lo_traversal_examples.
Section binary_search.
Variable i : nat.
Variable g : nat -> nat.
Variable def : nat.
Program Definition binarysearch' (ab : nat * nat)
(f : forall ab', (ab'.2 - ab'.1 < ab.2 - ab.1)%coq_nat -> nat) : nat :=
let a := ab.1 in let b := ab.2 in
match Bool.bool_dec (b <= a) true with
| left _ => if g a == i then a else def
| right _ =>
let p := (a + b)./2 in
let x := g p in
match Bool.bool_dec (i <= x) true with
| left _ => f (a, p) _
| right _ => (* x > i *) f (p.+1, b) _
end
end.
Next Obligation.
clear Heq_anonymous Heq_anonymous0 f.
move/negP: wildcard'0; rewrite /= -ltnNge => ab0.
apply/ltP.
by rewrite ltn_sub2r // -divn2 ltn_divLR // muln2 -addnn ltn_add2r.
Qed.
Next Obligation.
clear Heq_anonymous0 Heq_anonymous f.
move/negP : wildcard'0; rewrite /= -ltnNge => ab0.
by apply/ltP; rewrite ltn_sub2l // ltnS -divn2 leq_divRL // muln2 -addnn leq_add2l ltnW.
Qed.
Definition myltn (x y : nat * nat) := (x.2 - x.1 < y.2 - y.1)%coq_nat.
Lemma well_founded_myltn : well_founded myltn.
Proof.
apply (Wf_nat.well_founded_lt_compat _ (fun x : nat * nat => x.2 - x.1)) => x y.
rewrite /myltn => /ltP H; by apply/ltP.
Qed.
Definition binarysearch := Fix well_founded_myltn (fun _ => nat) binarysearch'.
Lemma binarysearch_unfold (x : nat * nat) :
binarysearch x = @binarysearch' x (fun y _ => binarysearch y).
Proof.
rewrite /binarysearch Fix_eq // => x0 f f' H; congr binarysearch'.
apply FunctionalExtensionality.functional_extensionality_dep => y.
by apply FunctionalExtensionality.functional_extensionality.
Qed.
Hypothesis g_incr : forall x y, x <= y -> g x <= g y.
Lemma intervalsearch_spec (x : nat * nat) : exists k : nat,
((x.1 <= k <= x.2) && (g k == i)) || (k == def).
Proof.
case/boolP : [exists k : 'I_(g x.2), (x.1 <= k <= x.2) && (g k == i)] => [|].
case/existsP=> k Hk; exists (val k).
by rewrite Hk.
rewrite negb_exists => /forallP /= => H.
exists def.
by apply/orP; right.
Qed.
Definition Intervalsearch x := ex_minn (intervalsearch_spec x).
Lemma g_incr_inv a a' : g a >= i -> g a' == i -> a' >= a -> g a == i.
Proof.
move=> e Ha' Haa'.
move: (g_incr Haa').
rewrite (eqP Ha') => e'.
move/andP: (conj e e').
by rewrite -eqn_leq => /eqP ->.
Qed.
Lemma Intervalsearch_eq x y :
y.1 <= x.1 -> x.1 <= x.2 -> x.2 <= y.2 -> def > y.2 ->
(forall a, y.1 <= a < x.1 -> g a < i) ->
(forall a, x.2 <= a <= y.2 -> g a >= i) ->
Intervalsearch x = Intervalsearch y.
Proof.
move=> H1 Hx H2 Hdef Hl Hr.
have Hl': forall m, m >= y.1 -> g m == i -> m >= x.1.
move=> m Hm Hgm.
case Hxm: (_ <= _) => //.
move/negP/negP in Hxm.
have /ltn_eqF: g m < i.
by rewrite Hl // Hm ltnNge Hxm.
by rewrite Hgm.
rewrite /Intervalsearch.
case: ex_minnP => m /= /orP [|] Hm Hall;
case: ex_minnP => m' /= /orP [|] Hm' Hall'.
- have Hm'm: m' <= m.
apply (Hall' m).
move/andP: Hm => [] /andP [] Hxm Hmx ->.
by rewrite (leq_trans H1 Hxm) (leq_trans Hmx H2).
have Hmm': m <= m'.
apply (Hall m').
move/andP: Hm' => [] /andP [] Hym Hmy Hm'.
move/andP/proj1/andP/proj2: Hm => /(leq_trans Hm'm) ->.
by rewrite Hm' Hl'.
apply/eqP.
by rewrite eqn_leq Hm'm Hmm'.
- have mdef: def <= m.
rewrite -(eqP Hm'); apply Hall'.
move/andP: Hm => [] /andP [] Hxm Hmx ->.
by rewrite (leq_trans H1 Hxm) (leq_trans Hmx H2).
move/andP/proj1/andP/proj2: Hm => Hmx.
have: def <= y.2.
by apply (leq_trans mdef), (leq_trans Hmx).
by rewrite leqNgt Hdef.
- move/andP: Hm' => [] /andP [Hym' Hm'y] Hm'i.
have mdef: def <= m'.
rewrite -(eqP Hm); apply Hall.
rewrite Hm'i Hl' //.
case Hm': (m' <= _) => //.
move/negP/negP in Hm'.
rewrite -ltnNge in Hm'.
have Hx2: g x.2 == i.
rewrite (g_incr_inv _ Hm'i) //.
by rewrite Hr // leqnn.
by apply ltnW.
have Hm'': m' <= x.2.
by rewrite Hall' // Hx2 H2 (leq_trans H1 Hx).
by rewrite ltnNge Hm'' in Hm'.
apply/eqP.
by rewrite (eqP Hm) eqn_leq mdef Hall' // eqxx orbT.
- by rewrite (eqP Hm) (eqP Hm').
Qed.
Lemma Intervalsearch_out x : ~~ (i <= g x.2) -> Intervalsearch x = def.
Proof.
rewrite /Intervalsearch => Hi.
case: ex_minnP => m /= /orP [|/eqP //] Hm Hall.
move/andP: Hm => [] /andP [_ /g_incr Hma'] Hgm.
by rewrite -(eqP Hgm) Hma' in Hi.
Qed.
Lemma Intervalsearch_one a :
a < def -> Intervalsearch (a,a) = if g a == i then a else def.
Proof.
rewrite /Intervalsearch => Hdef.
case: ex_minnP => m /= Hm Hall.
case: ifPn.
case/orP: Hm => [/andP [] | /eqP Hm gx1i].
by rewrite -eqn_leq => /eqP.
move: (Hall a) Hdef.
by rewrite ltnNge Hm gx1i !leqnn /= => ->.
case/orP: Hm => [/andP [] | /eqP -> //].
by rewrite -eqn_leq => /eqP <- ->.
Qed.
Lemma avg_r a a' : a <= a' -> a <= (a + a')./2.
Proof.
move=> Haa'.
by rewrite -[X in X <= _]doubleK half_leq // -addnn leq_add2l.
Qed.
Lemma avg_l a a' : a <= a' -> (a + a')./2 <= a'.
Proof.
move=> Haa'.
rewrite -[X in _ <= X]doubleK.
apply half_leq.
by rewrite -addnn leq_add2r.
Qed.
Lemma avg_ltn_l a a' : a < a' -> (a+a')./2 < a'.
Proof.
move=> n.
destruct a'.
by rewrite ltn0 in n.
refine (leq_ltn_trans _ (ltnSn _)).
rewrite -addSnnS.
case Haa': (a == a').
by rewrite -(eqP Haa') -add1n -addnA addnn -/(true : nat) half_bit_double.
rewrite -[X in _ <= X]doubleK half_leq // -addnn leq_add2r.
by rewrite ltn_neqAle Haa' -ltnS.
Qed.
Lemma binarysearchE x :
def > x.2 -> x.1 <= x.2 -> binarysearch x = Intervalsearch x.
Proof.
move: x.
refine (well_founded_ind well_founded_myltn _ _) => [] [a a'] /= IH Hdef Hx.
rewrite binarysearch_unfold /= /binarysearch' /=.
destruct Bool.bool_dec.
have {Hx e}Haa': a = a'.
move/andP: (conj Hx e).
by rewrite -eqn_leq => /eqP.
by rewrite Haa' Intervalsearch_one.
move/negP in n.
rewrite -ltnNge in n.
destruct Bool.bool_dec.
+ rewrite IH /=; first last.
- by apply avg_r.
- refine (leq_ltn_trans _ Hdef).
by apply avg_l.
- rewrite /myltn /=.
apply /leP.
by rewrite ltn_sub2r // avg_ltn_l.
apply Intervalsearch_eq => //=.
- by apply avg_r.
- by apply avg_l.
- move=> u /andP [e1].
by rewrite ltnNge e1.
- move=> u /andP [e1 _].
by apply (leq_trans e), g_incr.
+ rewrite IH //=; first last.
- by apply avg_ltn_l.
- rewrite /myltn /=.
apply /ltP.
apply ltn_sub2l; first done.
by rewrite ltnS avg_r.
case Hi: (i <= g a'); first last.
move/negP/negP in Hi.
by rewrite !Intervalsearch_out.
apply Intervalsearch_eq => //=.
- by apply leqW, avg_r.
- by apply avg_ltn_l.
- move=> u /andP [_].
rewrite ltnS.
move/g_incr/leq_ltn_trans; apply.
move/negP: n0.
by rewrite -ltnNge.
- move=> u.
by rewrite -eqn_leq => /eqP <-.
Qed.
End binary_search.
Section bfs.
(* foldl-like arguments for bfs *)
Variable T : Type.
Variable A : eqType. (* label of tree *)
Variable f : T -> A -> T.
Definition qsize q := sumn (map (@number_of_nodes A) q).
Function bfs a q {measure qsize q} :=
match q with
| [::] => a
| t :: q' =>
let: Node v ts := t in
bfs (f a v) (q' ++ ts)
end.
Proof.
move=> _ _ _ q' v ts _ _.
apply/leP.
by rewrite /qsize /= map_cat sumn_cat addnC ltn_add2r number_of_nodes_Node.
Qed.
Lemma bfs_level_order_forest_traversal' a q :
bfs a q = foldl f a (flatten (forest_traversal (@label_of_node A) q)).
Proof.
apply bfs_ind => {a q} // a q t q' Hq v ts Ht -> /=.
case/boolP: (nilp q') => Hq'.
by rewrite (nilP Hq').
rewrite (forest_traversalE _ Hq') /=; congr foldl.
rewrite /forest_traversal foldr_cat.
set fts := foldr _ _ ts.
rewrite (forest_traversalE' _ _ Hq') /= -catA; congr cat.
case: fts => // h fts.
rewrite [LHS]/= -!(foldr_map (level_traversal _) (mzip (cat_monoid A))).
by rewrite -foldr1_mulr /flatten flatten_mzipC.
Qed.
End bfs.