-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate_prime.py
84 lines (72 loc) · 3.13 KB
/
generate_prime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2015 Pedro Alves
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import math
import sys
def miller_rabin(p,s=11):
#computes p-1 decomposition in 2**u*r
r = p-1
u = 0
while r&1 == 0:#true while the last bit of r is zero
u += 1
r = int(r/2)
# apply miller_rabin primality test
for i in range(s):
a = random.randrange(2,p-1) # choose random a in {2,3,...,p-2}
z = pow(a,r,p)
if z != 1 and z != p-1:
for j in range(u-1):
if z != p-1:
z = pow(z,2,p)
if z == 1:
return False
else:
break
if z != p-1:
return False
return True
def is_prime(n,s=11):
#lowPrimes is all primes (sans 2, which is covered by the bitwise and operator)
#under 1000. taking n modulo each lowPrime allows us to remove a huge chunk
#of composite numbers from our potential pool without resorting to Rabin-Miller
lowPrimes = [3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179
,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269
,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367
,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461
,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571
,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661
,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773
,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883
,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]
if (n >= 3):
if (n&1 != 0):
for p in lowPrimes:
if (n == p):
return True
if (n % p == 0):
return False
return miller_rabin(n,s)
return False
def generate_large_prime(k,s=11):
#print "Generating prime of %d bits" % k
#k is the desired bit length
# using security parameter s=11, we have a error probability of less than
# 2**-80
r=int(100*(math.log(k,2)+1)) #number of max attempts
while r>0:
#randrange is mersenne twister and is completely deterministic
#unusable for serious crypto purposes
n = random.randrange(2**(k-1),2**(k))
r-=1
if is_prime(n,s) == True:
return n
raise Exception("Failure after %d tries." % r)