-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_change.py
80 lines (72 loc) · 3.15 KB
/
eval_change.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import numpy as np
import random
import torch
import argparse
from src.pilot import get_triples
from tqdm import tqdm
from minicons import scorer
from transformers import (AutoModelForCausalLM, AutoTokenizer,
BitsAndBytesConfig
)
def eval_change(model, num_examples, triples_path, lemmas_path,
quantize=False, induction=False, qa_format=False):
triples = get_triples(triples_path, lemmas_path,
qa_format=qa_format, induction=induction)
if quantize:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = scorer.IncrementalLMScorer(model,
quantization_config=bnb_config,
device="auto")
else:
model = scorer.IncrementalLMScorer(model, device="cuda")
# uniform subsample
random.seed(12)
random.shuffle(triples)
triples = triples[:num_examples]
control_minus_empty = []
prompt_minus_control = []
for triple in tqdm(triples, desc="Examples", total=num_examples):
# prefixes = ["", triple[1].split("Conclusion:")[0], triple[2].split("Conclusion:")[0]]
# queries = [triple[0]] * 3
if qa_format:
prefixes = [
f"Is it true that {triple[0]}? Answer with yes/no: ",
triple[1],
triple[2]
]
queries = ["Yes"] * 3
else:
prefixes = [
"",
triple[1].split("Conclusion:")[0] + "Conclusion: ",
triple[2].split("Conclusion:")[0] + "Conclusion: "
]
queries = [triple[0]] * 3
scores = model.conditional_score(prefixes, queries, separator="")
print(prefixes)
print(queries)
print(scores)
prompt_minus_control.append(scores[2] - scores[1])
control_minus_empty.append(scores[1] - scores[0])
print(f"control - empty: {np.mean(control_minus_empty)} ({np.std(control_minus_empty)})")
print(f"prompt - control: {np.mean(prompt_minus_control)} ({np.std(prompt_minus_control)})")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="mistralai/Mistral-7b-v0.1")
parser.add_argument("--num_examples", type=int, default=100)
parser.add_argument("--induction", action="store_true",
help="If false (default), evaluate deduction.")
parser.add_argument("--qa_format", action="store_true",
help="If false (default), get probability of 'NN is daxable.' If true, use yes/no contrasts.")
parser.add_argument("--quantize", action="store_true",
help="If true, use 4-bit quantization.")
args = parser.parse_args()
triples_path = "data/things/things-triples.csv"
lemmas_path = "data/things/things-lemmas-annotated.csv"
eval_change(args.model, args.num_examples, triples_path, lemmas_path,
quantize=args.quantize, induction=args.induction, qa_format=args.qa_format)