forked from MilaNLProc/contextualized-topic-models
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathctm.py
506 lines (422 loc) · 18.2 KB
/
ctm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import os
from collections import defaultdict
import multiprocessing as mp
import requests
import numpy as np
import datetime
import torch
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from contextualized_topic_models.networks.decoding_network import DecoderNetwork
class CTM(object):
"""Class to train CTM model."""
def __init__(self, input_size, bert_input_size, inference_type, n_components=10, model_type='prodLDA',
hidden_sizes=(100, 100), activation='softplus', dropout=0.2,
learn_priors=True, batch_size=64, lr=2e-3, momentum=0.99,
solver='adam', num_epochs=100, reduce_on_plateau=False, nb_labels=None, nll_lambda=1.0,
num_data_loader_workers=mp.cpu_count()):
"""
Initialize CTM model.
Args
input_size : int, dimension of input
n_components : int, number of topic components, (default 10)
model_type : string, 'prodLDA' or 'LDA' (default 'prodLDA')
hidden_sizes : tuple, length = n_layers, (default (100, 100))
activation : string, 'softplus', 'relu', (default 'softplus')
dropout : float, dropout to use (default 0.2)
learn_priors : bool, make priors a learnable parameter (default True)
batch_size : int, size of batch to use for training (default 64)
lr : float, learning rate to use for training (default 2e-3)
momentum : float, momentum to use for training (default 0.99)
solver : string, optimizer 'adam' or 'sgd' (default 'adam')
num_epochs : int, number of epochs to train for, (default 100)
reduce_on_plateau : bool, reduce learning rate by 10x on plateau of 10 epochs (default False)
num_data_loader_workers : int, number of data loader workers (default cpu_count). set it to 0 if you are
using Windows
"""
assert isinstance(input_size, int) and input_size > 0,\
"input_size must by type int > 0."
assert isinstance(n_components, int) and input_size > 0,\
"n_components must by type int > 0."
assert model_type in ['LDA', 'prodLDA'],\
"model must be 'LDA' or 'prodLDA'."
assert isinstance(hidden_sizes, tuple), \
"hidden_sizes must be type tuple."
assert activation in ['softplus', 'relu'], \
"activation must be 'softplus' or 'relu'."
assert dropout >= 0, "dropout must be >= 0."
assert isinstance(learn_priors, bool), "learn_priors must be boolean."
assert isinstance(batch_size, int) and batch_size > 0,\
"batch_size must be int > 0."
assert lr > 0, "lr must be > 0."
assert isinstance(momentum, float) and momentum > 0 and momentum <= 1,\
"momentum must be 0 < float <= 1."
assert solver in ['adam', 'sgd'], "solver must be 'adam' or 'sgd'."
assert isinstance(reduce_on_plateau, bool),\
"reduce_on_plateau must be type bool."
assert isinstance(num_data_loader_workers, int) and num_data_loader_workers >= 0, \
"num_data_loader_workers must by type int >= 0. set 0 if you are using windows"
self.input_size = input_size
self.n_components = n_components
self.model_type = model_type
self.hidden_sizes = hidden_sizes
self.activation = activation
self.dropout = dropout
self.learn_priors = learn_priors
self.batch_size = batch_size
self.lr = lr
self.bert_size = bert_input_size
self.momentum = momentum
self.solver = solver
self.num_epochs = num_epochs
self.reduce_on_plateau = reduce_on_plateau
self.nb_labels = nb_labels
self.nll_lambda = nll_lambda
self.num_data_loader_workers = num_data_loader_workers
# init inference avitm network
self.model = DecoderNetwork(
input_size, self.bert_size, inference_type, n_components, model_type, hidden_sizes, activation,
dropout, learn_priors, nb_labels=self.nb_labels)
# init optimizer
if self.solver == 'adam':
self.optimizer = optim.Adam(
self.model.parameters(), lr=lr, betas=(self.momentum, 0.99))
elif self.solver == 'sgd':
self.optimizer = optim.SGD(
self.model.parameters(), lr=lr, momentum=self.momentum)
# init lr scheduler
if self.reduce_on_plateau:
self.scheduler = ReduceLROnPlateau(self.optimizer, patience=10)
# performance attributes
self.best_loss_train = float('inf')
# training atributes
self.model_dir = None
self.train_data = None
self.nn_epoch = None
# learned topics
self.best_components = None
# Use cuda if available
# TODO: set manually to cpu
#if torch.cuda.is_available():
# self.USE_CUDA = True
#else:
self.USE_CUDA = False
if self.USE_CUDA:
self.model = self.model.cuda()
def _loss(self, inputs, word_dists, prior_mean, prior_variance,
posterior_mean, posterior_variance, posterior_log_variance, doc_log_probs, labels):
# KL term
# var division term
var_division = torch.sum(posterior_variance / prior_variance, dim=1)
# diff means term
diff_means = prior_mean - posterior_mean
diff_term = torch.sum(
(diff_means * diff_means) / prior_variance, dim=1)
# logvar det division term
logvar_det_division = \
prior_variance.log().sum() - posterior_log_variance.sum(dim=1)
# combine terms
KL = 0.5 * (
var_division + diff_term - self.n_components + logvar_det_division)
# Reconstruction term
RL = -torch.sum(inputs * torch.log(word_dists + 1e-10), dim=1)
if doc_log_probs is not None:
NLL = F.nll_loss(doc_log_probs.view(-1, self.nb_labels), torch.squeeze(labels))
loss = KL + RL + (self.nll_lambda * NLL)
return loss.sum()
loss = KL + RL
return loss.sum()
def _train_epoch(self, loader):
"""Train epoch."""
self.model.train()
train_loss = 0
samples_processed = 0
for batch_samples in loader:
# batch_size x vocab_size
X = batch_samples['X']
X_bert = batch_samples['X_bert']
if self.nb_labels is not None:
labels = batch_samples['label']
else:
labels = None
if self.USE_CUDA:
X = X.cuda()
X_bert = X_bert.cuda()
# forward pass
self.model.zero_grad()
prior_mean, prior_variance, \
posterior_mean, posterior_variance, posterior_log_variance, \
word_dists, doc_log_probs = self.model(X, X_bert)
# backward pass
loss = self._loss(
X, word_dists, prior_mean, prior_variance,
posterior_mean, posterior_variance, posterior_log_variance, doc_log_probs, labels)
loss.backward()
self.optimizer.step()
# compute train loss
samples_processed += X.size()[0]
train_loss += loss.item()
train_loss /= samples_processed
return samples_processed, train_loss
def fit(self, train_dataset, save_dir=None):
"""
Train the AVITM model.
Args
train_dataset : PyTorch Dataset classs for training data.
val_dataset : PyTorch Dataset classs for validation data.
save_dir : directory to save checkpoint models to.
"""
# Print settings to output file
print("Settings: \n\
N Components: {}\n\
Topic Prior Mean: {}\n\
Topic Prior Variance: {}\n\
Model Type: {}\n\
Hidden Sizes: {}\n\
Activation: {}\n\
Dropout: {}\n\
Learn Priors: {}\n\
Learning Rate: {}\n\
Momentum: {}\n\
Reduce On Plateau: {}\n\
Save Dir: {}".format(
self.n_components, 0.0,
1. - (1./self.n_components), self.model_type,
self.hidden_sizes, self.activation, self.dropout, self.learn_priors,
self.lr, self.momentum, self.reduce_on_plateau, save_dir))
self.model_dir = save_dir
self.train_data = train_dataset
train_loader = DataLoader(
self.train_data, batch_size=self.batch_size, shuffle=True,
num_workers=self.num_data_loader_workers)
# init training variables
train_loss = 0
samples_processed = 0
# train loop
for epoch in range(self.num_epochs):
self.nn_epoch = epoch
# train epoch
s = datetime.datetime.now()
sp, train_loss = self._train_epoch(train_loader)
samples_processed += sp
e = datetime.datetime.now()
# report
print("Epoch: [{}/{}]\tSamples: [{}/{}]\tTrain Loss: {}\tTime: {}".format(
epoch+1, self.num_epochs, samples_processed,
len(self.train_data)*self.num_epochs, train_loss, e - s))
# save best
if train_loss < self.best_loss_train:
self.best_loss_train = train_loss
self.best_components = self.model.beta
if save_dir is not None:
self.save(save_dir)
def test(self, test_dataset, num_tokens):
"""
Test a CTM; get perplexity on held-out test_dataset.
Args
test_dataset : PyTorch Dataset classs for training data.
"""
# Print settings to output file
"""
print("Settings: \n\
N Components: {}\n\
Topic Prior Mean: {}\n\
Topic Prior Variance: {}\n\
Model Type: {}\n\
Hidden Sizes: {}\n\
Activation: {}\n\
Dropout: {}\n\
Learn Priors: {}\n\
Learning Rate: {}\n\
Momentum: {}\n\
Reduce On Plateau: {}\n\
Save Dir: {}".format(
self.n_components, 0.0,
1. - (1./self.n_components), self.model_type,
self.hidden_sizes, self.activation, self.dropout, self.learn_priors,
self.lr, self.momentum, self.reduce_on_plateau, save_dir))
"""
test_loader = DataLoader(
test_dataset, batch_size=self.batch_size, shuffle=True,
num_workers=self.num_data_loader_workers)
# init training variables
test_loss = 0
samples_processed = 0
# testing
s = datetime.datetime.now()
self.model.eval()
with torch.no_grad():
for batch_samples in test_loader:
# batch_size x vocab_size
X = batch_samples['X']
X_bert = batch_samples['X_bert']
if self.nb_labels is not None:
labels = batch_samples['label']
else:
labels = None
if self.USE_CUDA:
X = X.cuda()
X_bert = X_bert.cuda()
# forward pass
self.model.zero_grad()
prior_mean, prior_variance, \
posterior_mean, posterior_variance, posterior_log_variance, \
word_dists, doc_log_probs = self.model(X, X_bert)
# backward pass
loss = self._loss(
X, word_dists, prior_mean, prior_variance,
posterior_mean, posterior_variance, posterior_log_variance, doc_log_probs, labels)
# compute train loss
# samples_processed += X.size()[0]
test_loss += loss.item()
# test_loss /= samples_processed
perplexity = np.exp(test_loss / float(num_tokens))
e = datetime.datetime.now()
print("Perplexity: {}\tTime: {}".format(
perplexity, e - s))
def get_thetas(self, dataset, n_samples=20):
"""Predict input."""
self.model.eval()
loader = DataLoader(
dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.num_data_loader_workers)
final_thetas = []
for _ in range(n_samples):
with torch.no_grad():
collect_theta = []
for batch_samples in loader:
# batch_size x vocab_size
X = batch_samples['X']
X = X.reshape(X.shape[0], -1)
X_bert = batch_samples['X_bert']
if self.USE_CUDA:
X = X.cuda()
X_bert = X_bert.cuda()
# forward pass
self.model.zero_grad()
collect_theta.extend(self.model.get_theta(X, X_bert).cpu().numpy().tolist())
final_thetas.append(np.array(collect_theta))
return np.sum(final_thetas, axis=0)/n_samples
def predict(self, dataset, k=10):
"""Predict input."""
self.model.eval()
loader = DataLoader(
dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.num_data_loader_workers)
preds = []
with torch.no_grad():
for batch_samples in loader:
# batch_size x vocab_size
X = batch_samples['X']
X_bert = batch_samples['X_bert']
if self.USE_CUDA:
X = X.cuda()
X_bert = X_bert.cuda()
# forward pass
self.model.zero_grad()
_, _, _, _, _, word_dists, _ = self.model(X, X_bert)
_, indices = torch.sort(word_dists, dim=1)
preds += [indices[:, :k]]
preds = torch.cat(preds, dim=0)
return preds
def score(self, scorer='coherence', k=10, topics=5):
"""Score model."""
if scorer == 'perplexity':
# score = perplexity_score(truth, preds)
raise NotImplementedError("Not implemented yet.")
elif scorer == 'coherence':
score = self._get_coherence(k, topics=topics)
else:
raise ValueError("Unknown score type!")
return score
def _get_coherence(self, k=10, topics=5):
"""Get coherence using palmetto web service."""
component_dists = self.best_components
base_url = 'https://palmetto.demos.dice-research.org/service/cv?words='
scores = []
i = 0
while i < topics:
print(i)
t = np.random.randint(0, self.n_components)
_, idxs = torch.topk(component_dists[t], k)
component_words = [self.train_data.idx2token[idx]
for idx in idxs.cpu().numpy()]
url = base_url + '%20'.join(component_words)
print(url)
try:
score = float(requests.get(url, timeout=300).content)
scores += [score]
i += 1
except requests.exceptions.Timeout:
print("Attempted scoring timed out. Trying again.")
continue
return np.mean(scores)
def get_topics(self, k=10):
"""
Retrieve topic words.
Args
k : (int) number of words to return per topic, default 10.
"""
assert k <= self.input_size, "k must be <= input size."
component_dists = self.best_components
topics = defaultdict(list)
for i in range(self.n_components):
_, idxs = torch.topk(component_dists[i], k)
component_words = [self.train_data.idx2token[idx]
for idx in idxs.cpu().numpy()]
topics[i] = component_words
return topics
def get_topic_lists(self, k=10):
"""
Retrieve the lists of topic words.
Args
k : (int) number of words to return per topic, default 10.
"""
assert k <= self.input_size, "k must be <= input size."
component_dists = self.best_components
topics = []
for i in range(self.n_components):
_, idxs = torch.topk(component_dists[i], k)
component_words = [self.train_data.idx2token[idx]
for idx in idxs.cpu().numpy()]
topics.append(component_words)
return topics
def _format_file(self):
model_dir = "AVITM_nc_{}_tpm_{}_tpv_{}_hs_{}_ac_{}_do_{}_lr_{}_mo_{}_rp_{}".\
format(self.n_components, 0.0, 1 - (1./self.n_components),
self.model_type, self.hidden_sizes, self.activation,
self.dropout, self.lr, self.momentum,
self.reduce_on_plateau)
return model_dir
def save(self, models_dir=None):
"""
Save model.
Args
models_dir: path to directory for saving NN models.
"""
if (self.model is not None) and (models_dir is not None):
model_dir = self._format_file()
if not os.path.isdir(os.path.join(models_dir, model_dir)):
os.makedirs(os.path.join(models_dir, model_dir))
filename = "epoch_{}".format(self.nn_epoch) + '.pth'
fileloc = os.path.join(models_dir, model_dir, filename)
with open(fileloc, 'wb') as file:
torch.save({'state_dict': self.model.state_dict(),
'dcue_dict': self.__dict__}, file)
def load(self, model_dir, epoch):
"""
Load a previously trained model.
Args
model_dir: directory where models are saved.
epoch: epoch of model to load.
"""
epoch_file = "epoch_"+str(epoch)+".pth"
model_file = os.path.join(model_dir, epoch_file)
with open(model_file, 'rb') as model_dict:
checkpoint = torch.load(model_dict)
for (k, v) in checkpoint['dcue_dict'].items():
setattr(self, k, v)
# self._init_nn() #TODO implement this method
self.model.load_state_dict(checkpoint['state_dict'])