-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPIW.v
1030 lines (918 loc) · 42.8 KB
/
PIW.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Section IW.
(* the type of indices *)
Variable I:Type.
(* selects the different constructors and the non-recursive arguments *)
Variable A:Type.
(* each member of B denotes one recursive occurrence in the constructor.
Only the cardinality matters *)
Variable B: A -> Type.
(* the index for the conclusion *)
Variable AI: A -> I.
(* the index for each recursive occurrence in B *)
Variable BI: forall a, B a -> I.
Inductive IWT : I ->Type :=
iwt : forall (a:A), (forall (b:B a), IWT (BI a b)) -> IWT (AI a).
Inductive IWP : I ->Prop :=
iwp : forall (a:A), (forall (b:B a), IWP (BI a b)) -> IWP (AI a).
Definition getA (i: I) (t : IWT i) : A :=
match t with
iwt a _ => a
end.
End IW.
(* leAA := (unit + nat) *)
Definition leWB (b:(unit + nat)):= if b then False else True.
Definition leAI n (b:(unit + nat)):=
(match b with
| inl _ => n
| inr m => S m
end).
Definition leBI n (b:(unit + nat)):=
(match b with
| inl _ => n
| inr m => m
end).
Definition leW (n:nat): nat -> Prop :=
IWP nat (unit + nat) leWB (leAI n) (fun b _ => leBI n b).
Lemma leW_iff : forall n m, le n m <-> leW n m.
Proof using.
split; intro H.
- unfold leW. induction H.
+ apply (@iwp nat (unit + nat) leWB (leAI n) (fun b _ => leBI n b) (inl tt)).
simpl.
tauto.
+ apply (@iwp nat (unit + nat) leWB (leAI n) (fun b _ => leBI n b) (inr m)).
simpl. intros _. assumption.
- induction H.
subst. clear H. rename H0 into H.
destruct a; simpl in *.
+ clear H. constructor.
+ constructor. tauto.
Qed.
Require Import common.
(*
Parametricity Recursive IWT.
Print IWT_R.
Parametricity Recursive IWP.
Print IWP_R.
*)
Inductive IWT_R (I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type) (AI₁ : A₁ -> I₁)
(AI₂ : A₂ -> I₂) (AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
: forall (H : I₁) (H0 : I₂), I_R H H0 -> IWT I₁ A₁ B₁ AI₁ BI₁ H -> IWT I₂ A₂ B₂ AI₂ BI₂ H0 -> Type :=
iwt_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂)
(H : forall b : B₁ a₁, IWT I₁ A₁ B₁ AI₁ BI₁ (BI₁ a₁ b))
(H0 : forall b : B₂ a₂, IWT I₂ A₂ B₂ AI₂ BI₂ (BI₂ a₂ b)),
(forall (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂),
IWT_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R)
(H b₁) (H0 b₂)) ->
IWT_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(AI₁ a₁) (AI₂ a₂) (AI_R a₁ a₂ a_R) (iwt I₁ A₁ B₁ AI₁ BI₁ a₁ H)
(iwt I₂ A₂ B₂ AI₂ BI₂ a₂ H0).
Inductive IWP_R (I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type) (AI₁ : A₁ -> I₁)
(AI₂ : A₂ -> I₂) (AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
: forall (H : I₁) (H0 : I₂), I_R H H0 -> IWP I₁ A₁ B₁ AI₁ BI₁ H -> IWP I₂ A₂ B₂ AI₂ BI₂ H0 -> Prop :=
iwp_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂)
(H : forall b : B₁ a₁, IWP I₁ A₁ B₁ AI₁ BI₁ (BI₁ a₁ b))
(H0 : forall b : B₂ a₂, IWP I₂ A₂ B₂ AI₂ BI₂ (BI₂ a₂ b)),
(forall (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂),
IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R)
(H b₁) (H0 b₂)) ->
IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(AI₁ a₁) (AI₂ a₂) (AI_R a₁ a₂ a_R) (iwp I₁ A₁ B₁ AI₁ BI₁ a₁ H)
(iwp I₂ A₂ B₂ AI₂ BI₂ a₂ H0).
Require Import List.
Import ListNotations.
Require Import common.
Print IWP_R.
Scheme IRP_indd := Induction for IWP Sort Prop.
Require Import PiTypeR.
(* the statement and proof are independent of the parametricity translation *)
Lemma IWP_RPW_aux_half
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R) (* TotalHeteroRel implies TotalHeteroRelP *)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
(IWP I₁ A₁ B₁ AI₁ BI₁ H) -> (IWP I₂ A₂ B₂ AI₂ BI₂ H0).
Proof using.
rename H into i₁.
rename H0 into i₂.
intros Hyp.
revert i_R.
revert i₂.
induction Hyp as [a₁ Ha Hb].
(* replace i₂ with something of the form (AI₂ a₂), so that the constructor of IWP
can be invoked *)
pose proof (fst A_R_tot a₁) as Haa.
Check iwt.
intros.
destruct Haa as [a₂ a_R].
pose proof (AI_R _ _ a_R) as ir2.
pose proof (proj1 I_R_iso _ _ _ i_R ir2) as Hir2.
subst. clear ir2. constructor.
intros b₂.
pose proof (snd (B_R_tot _ _ a_R) b₂) as Hbr.
destruct Hbr as [b₁ b_R].
apply Hb with (b:=b₁).
eapply BI_R. apply b_R.
Defined.
Lemma IWP_RPW_aux_half2
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), IffRel (B_R _ _ a_R)) (* iff is not sufficient. need totalit *)
:
(IWP I₁ A₁ B₁ AI₁ BI₁ H) -> (IWP I₂ A₂ B₂ AI₂ BI₂ H0).
Proof using.
rename H into i₁.
rename H0 into i₂.
intros Hyp.
revert i_R.
revert i₂.
induction Hyp as [a₁ Ha Hb].
(* replace i₂ with something of the form (AI₂ a₂), so that the constructor of IWP
can be invoked *)
pose proof (fst A_R_tot a₁) as Haa.
Check iwt.
intros.
destruct Haa as [a₂ a_R].
pose proof (AI_R _ _ a_R) as ir2. (* similarly, iff wont be sufficient for A_R *)
pose proof (proj1 I_R_iso _ _ _ i_R ir2) as Hir2.
subst. clear ir2. constructor.
intros b₂.
pose proof (snd (B_R_tot _ _ a_R) b₂) as b1.
apply Hb with (b:=b1).
(* we need br to be able to invoke BI_R *)
apply BI_R with (a_R := a_R).
Abort.
Print Assumptions IWP_RPW_aux_half.
Require Import Trecord.
Require Import SquiggleEq.UsefulTypes.
Fixpoint IWP_RPW_aux_half2
(I₁ I₂ : Set) (I_R : BestRel I₁ I₂) (A₁ A₂ : Set) (A_R : BestRel A₁ A₂)
(B₁ : A₁ -> Set) (B₂ : A₂ -> Set)
(B_R : forall (H : A₁) (H0 : A₂), BestR A_R H H0 -> BestRel (B₁ H) (B₂ H0))
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), BestR A_R H H0 -> (BestR I_R) (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : BestR A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
BestR (B_R a₁ a₂ a_R) H H0 -> (BestR I_R) (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : BestR I_R H H0)
(p1: IWP I₁ A₁ B₁ AI₁ BI₁ H) : (IWP I₂ A₂ B₂ AI₂ BI₂ H0) :=
(match p1 in IWP _ _ _ _ _ i1 return forall i2, BestR I_R i1 i2 -> IWP I₂ A₂ B₂ AI₂ BI₂ i2
with
| iwp _ _ _ _ _ a1 f1 =>
let a2 := projT1 (fst (Rtot A_R) a1) in
let ar := projT2 (fst (Rtot A_R) a1) in
let f2 := (fun b2 =>
let b1 := projT1 (snd (Rtot (B_R a1 a2 ar)) b2) in
let br := projT2 (snd (Rtot (B_R a1 a2 ar)) b2) in
(IWP_RPW_aux_half2 _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R
_ _ (BI_R _ _ ar _ _ br) (f1 b1))
) in
let c2 := (iwp I₂ A₂ B₂ AI₂ BI₂ a2 f2) in
fun i2 ir =>
let peq := @BestOne12 I₁ I₂ I_R (AI₁ a1) i2 (AI₂ a2) ir (AI_R a1 a2 ar) in
@transport I₂ (AI₂ a2) i2 (fun i : I₂ => IWP I₂ A₂ B₂ AI₂ BI₂ i) peq c2
end) H0 i_R.
Require Import common.
Lemma IWP_RPW_aux
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
(IWP I₁ A₁ B₁ AI₁ BI₁ H) <-> (IWP I₂ A₂ B₂ AI₂ BI₂ H0).
Proof using.
intros.
rename H into i₁.
rename H0 into i₂. split.
- eapply IWP_RPW_aux_half; eauto.
- eapply IWP_RPW_aux_half with (I_R := rInv I_R) (A_R := rInv A_R)
(B_R:=rPiInv B_R); try assumption; [ | | | | ]; rInv.
Qed.
Lemma IWP_R_complete
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(irrel : relIrrUptoEq I_R) (* automatic for Set *)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R) (* TotalHeteroRel implies TotalHeteroRelP *)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
CompleteRel (IWP_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof.
intros x y.
rename H into i₁.
rename H0 into i₂.
revert i_R.
revert y.
revert i₂.
induction x as [xa xb Hind] using IRP_indd.
intros ? ? ?.
set (y2 := IWP_RPW_aux_half _ _ _ _ _ _ _ _ _ _ _ AI_R _ _ BI_R _ _ i_R
I_R_iso A_R_tot B_R_tot (iwp I₁ A₁ B₁ AI₁ BI₁ xa xb)).
pose proof (ProofIrrelevance.proof_irrelevance _ y y2).
subst y.
unfold y2.
simpl. clear y2.
destruct (fst A_R_tot xa) as [a₂ ar].
pose proof (AI_R _ _ ar) as ir2.
pose proof (proj1 I_R_iso _ _ _ i_R ir2) as Hir2.
subst i₂.
unfold eq_ind_r, eq_ind.
rewrite <- ProofIrrelevance.ProofIrrelevanceTheory.EqdepTheory.eq_rect_eq.
simpl.
specialize (irrel _ _ i_R (AI_R xa a₂ ar)). subst.
constructor.
intros. apply Hind.
Qed.
Lemma IWP_R_complete_simpl
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(irrel : relIrrUptoEq I_R) (* automatic for Set *)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R) (* TotalHeteroRel implies TotalHeteroRelP *)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
(x : IWP I₁ A₁ B₁ AI₁ BI₁ H)
:
(IWP I₂ A₂ B₂ AI₂ BI₂ H0) * (forall y : IWP I₂ A₂ B₂ AI₂ BI₂ H0,
IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R H H0 i_R x y).
Proof.
rename H into i₁.
rename H0 into i₂.
revert i_R.
revert i₂.
induction x as [a₁ b₁ Hb] using IRP_indd.
pose proof (fst A_R_tot a₁) as Haa.
destruct Haa as [a₂ a_R].
intros.
pose proof (AI_R _ _ a_R) as ir2. (* similarly, iff wont be sufficient for A_R *)
pose proof (proj1 I_R_iso _ _ _ i_R ir2) as Hir2.
subst. clear ir2.
evar ( c2 : IWP I₂ A₂ B₂ AI₂ BI₂ (AI₂ a₂)).
Unshelve. Focus 2.
constructor.
intros b₂.
pose proof (snd (B_R_tot _ _ a_R) b₂) as b1.
destruct b1 as [b1 br].
apply Hb with (b:=b1). apply BI_R with (a_R:=a_R). exact br.
(* the above is the same as iff *)
split;[exact c2|].
intro.
(* this is the only extra step vs iff/totality *)
pose proof (ProofIrrelevance.proof_irrelevance _ y c2).
subst y.
unfold c2.
simpl.
(* the totality infrastructure already does this. it creates a proof
of the equality of all the indices_Rs at once -- the generalized equality type.
just matching on that proof should suffice here, perhaps the same way it already does
*)
specialize (irrel _ _ i_R (AI_R _ _ a_R)). subst.
constructor.
(* this step is trivial.can directly code. No need to use any Pi type combinator *)
intros.
exact (snd (Hb _ _ _) _).
Defined.
Lemma IWP_RPW_aux_total
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), IffRel (B_R _ _ a_R))
:
TotalHeteroRel (IWP_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
intros.
eapply Prop_RSpec.
(* this route needs completeness which is too much to ask for *)
Abort.
(* iff implies TotalHeteroRel -- we should return the relation \r1 r2 => True.
We can also return IWP_R -- see below *)
Definition IWP_RP2
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
{R: (IWP I₁ A₁ B₁ AI₁ BI₁ H) -> (IWP I₂ A₂ B₂ AI₂ BI₂ H0) -> Prop & TotalHeteroRel R}.
Proof using.
exists (fun x y => True). simpl.
split; intros a; unfold rInv.
- rewrite IWP_RPW_aux in a; eauto; try assumption.
- rewrite <- IWP_RPW_aux in a; eauto; try assumption.
Defined.
(*
(* Check IWP_R_iwp_R, then replace IWP_R by proj1_sig IWP_RW *)
Lemma iwp_RW :
forall (I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type)
(A_R : A₁ -> A₂ -> Type) (B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂)
(H : forall b : B₁ a₁, IWP I₁ A₁ B₁ AI₁ BI₁ (BI₁ a₁ b))
(H0 : forall b : B₂ a₂, IWP I₂ A₂ B₂ AI₂ BI₂ (BI₂ a₂ b))
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(A_R_tot : TotalHeteroRelP A_R) (* TotalHeteroRel implies TotalHeteroRelP *)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRelP (B_R _ _ a_R)),
(forall (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂),
proj1_sig
(@IWP_RP I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R)
I_R_iso A_R_tot B_R_tot)
(H b₁)
(H0 b₂)) ->
proj1_sig
(@IWP_RP I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(AI₁ a₁) (AI₂ a₂) (AI_R a₁ a₂ a_R) I_R_iso A_R_tot B_R_tot)
(iwp I₁ A₁ B₁ AI₁ BI₁ a₁ H)
(iwp I₂ A₂ B₂ AI₂ BI₂ a₂ H0).
Proof using.
intros. simpl in *. exact I.
Qed.
*)
Definition IWT_RR :=
fix
ReflParam_PIWNew_IWT_RR0 (I I₂ : Type) (I_R : I -> I₂ -> Type)
(A A₂ : Type) (A_R : A -> A₂ -> Type)
(B : A -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H1 : A) (H2 : A₂),
A_R H1 H2 -> B H1 -> B₂ H2 -> Type)
(AI : A -> I) (AI₂ : A₂ -> I₂)
(AI_R : forall (H1 : A) (H2 : A₂),
A_R H1 H2 -> I_R (AI H1) (AI₂ H2))
(BI : forall a : A, B a -> I)
(BI₂ : forall a₂ : A₂, B₂ a₂ -> I₂)
(BI_R : forall (H1 : A) (H2 : A₂)
(H3 : A_R H1 H2) (H6 : B H1)
(H7 : B₂ H2),
B_R H1 H2 H3 H6 H7 -> I_R (BI H1 H6) (BI₂ H2 H7))
(H : I) (H0 : I₂) (H1 : I_R H H0)
(H2 : IWT I A B AI BI H) (H3 : IWT I₂ A₂ B₂ AI₂ BI₂ H0)
{struct H2} : Type :=
let reT i1 i2 := forall (ir : I_R i1 i2), Type in
(match H2 as iwt1 in IWT _ _ _ _ _ i1 return reT i1 H0
with
| iwt _ _ _ _ _ a x =>
match H3 as iwt2 in IWT _ _ _ _ _ i2 return reT (AI a) i2
with
| iwt _ _ _ _ _ a₂ x0 =>
fun ir =>
{a_R : A_R a a₂ &
{_
: forall (a1 : B a) (a2 : B₂ a₂) (p : B_R a a₂ a_R a1 a2),
ReflParam_PIWNew_IWT_RR0 I I₂ I_R A A₂ A_R B B₂ B_R AI AI₂ AI_R BI BI₂
BI_R (BI a a1) (BI₂ a₂ a2) (BI_R a a₂ a_R a1 a2 p)
(x a1) (x0 a2) & (ir=(AI_R a a₂ a_R))}}
end
end) H1.
Lemma IWT_RR_complete
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(irrel : relIrrUptoEq I_R)
(A_R_complete : CompleteRel A_R) (* this is a too strong assumption, especially
if A:Set even if the IWT/P is in Prop *)
:
CompleteRel (IWT_RR _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof.
intros x y.
rename H into i₁.
rename H0 into i₂.
revert i_R.
revert y.
revert i₂.
induction x as [xa xb Hind]. intros ? ?. destruct y as [ya yb].
simpl. intros ?.
exists (A_R_complete xa ya).
eexists. intros. apply Hind.
apply irrel.
Defined.
Lemma IWT_R_total_half
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(irrel : relIrrUptoEq I_R)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
(B_R_iso : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), oneToOne (B_R _ _ a_R))
(B_R_irrel : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), relIrrUptoEq (B_R _ _ a_R))
:
TotalHeteroRelHalf (IWT_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
intros.
rename H into i₁.
rename H0 into i₂.
intros Hyp.
revert i_R.
revert i₂.
induction Hyp as [a₁ Ha Hb].
pose proof (fst A_R_tot a₁) as Haa.
intros.
destruct Haa as [a₂ a_R].
pose proof (AI_R _ _ a_R) as ir2.
pose proof (proj1 I_R_iso _ _ _ i_R ir2) as Hir2.
subst.
specialize (fun b₁ b₂ b_R => Hb b₁ (BI₂ a₂ b₂) (BI_R _ _ a_R _ _ b_R)).
(* the i_R in the lemma may not be of the form cretIndices_R.
So, irrel is needed *)
specialize (irrel _ _ i_R (AI_R a₁ a₂ a_R)). subst.
clear ir2.
exists (iwt I₂ A₂ B₂ AI₂ BI₂ a₂
(fun b₂ => let b1p := (snd (B_R_tot _ _ a_R) b₂)
in (projT1 (Hb _ b₂ (projT2 b1p))))).
constructor.
intros. destruct (snd (B_R_tot a₁ a₂ a_R)).
unfold rInv in *.
simpl.
destruct (Hb x b₂ r). simpl in *. clear Hb.
pose proof (proj2 (B_R_iso _ _ _) _ _ _ b_R r). subst.
pose proof (B_R_irrel _ _ _ _ _ r b_R). subst.
exact i.
Defined.
Print IWT_R_total_half.
Print Assumptions IWT_R_total_half.
(*
Closed under the global context
*)
Set Implicit Arguments.
Lemma IWT_R_inv:
forall (I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type)
(A_R : A₁ -> A₂ -> Type) (B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0)) (H : I₁)
(H0 : I₂) (i_R : I_R H H0) (t2 : IWT I₂ A₂ B₂ AI₂ BI₂ H0) (t1 : IWT I₁ A₁ B₁ AI₁ BI₁ H),
IWT_R I₂ I₁ (rInv I_R) A₂ A₁ (rInv A_R) B₂ B₁ (rPiInv B_R) AI₂ AI₁
(fun (H1 : A₂) (H2 : A₁) (X : A_R H2 H1) => AI_R H2 H1 X) BI₂ BI₁
(fun (a₁ : A₂) (a₂ : A₁) (a_R : A_R a₂ a₁) (H1 : B₂ a₁) (H2 : B₁ a₂)
(X : rPiInv B_R a₁ a₂ a_R H1 H2) => BI_R a₂ a₁ a_R H2 H1 X) H0 H i_R t2 t1 ->
IWT_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R H H0 i_R t1 t2.
Proof using.
unfold rPiInv, rInv.
intros.
induction X; constructor; eauto.
Qed.
(* we would need a way to invert (fun a b => R b a) relations of arbitrary type constuctors.
We have rInv and rPiInv for type vars and piTypes. But we would need to invert inductives
and to prove that the inversion preserves goodness *)
Lemma IWT_R_total
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(irrel : relIrrUptoEq I_R)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
(B_R_iso : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), oneToOne (B_R _ _ a_R))
(B_R_irrel : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), relIrrUptoEq (B_R _ _ a_R))
:
TotalHeteroRel (IWT_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
split.
- apply IWT_R_total_half; auto.
- pose proof (@IWT_R_total_half _ _ (rInv I_R) _ _ (rInv A_R) _ _ (rPiInv B_R)
AI₂ AI₁ ltac:(rInv)
BI₂ BI₁ ltac:(rInv) _ _ i_R
ltac:(rInv) ltac:(rInv) ltac:(rInv)
ltac:(rInv) ltac:(rInv) ltac:(rInv)
) as Hh.
(* unfold TotalHeteroRelHalf, R_Pi, rPiInv, rInv in *. *)
revert Hh. clear.
intros ? t2.
specialize (Hh t2). destruct Hh as [t1 ?]; simpl in *.
exists t1. apply IWT_R_inv. assumption.
Qed.
(*
Require Import Coq.Logic.JMeq.
Require Import Coq.Program.Equality. *)
Require Import ProofIrrelevance.
Require Import Coq.Logic.FunctionalExtensionality.
Lemma IWT_R_iso_half
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(A_R_iso : oneToOne A_R)
(A_R_irrel : relIrrUptoEq A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
oneToOneHalf (IWT_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
rename H into i₁.
rename H0 into i₂. intros l1 r1 r2 ir1 ir2.
revert r2 ir2. induction ir1 as [ ? ? ? ? ? ? Hind].
intros.
subst.
inversion ir2. clear H4. subst. clear ir2.
pose proof ((proj1 A_R_iso) _ _ _ a_R a_R0 ) as heq.
symmetry in heq.
subst.
apply inj_pair2 in H14. subst.
(* inj_pair2 depends on proof irrelevance, or at least UIP in I₂.
In the global translation, in GoodRel, we can demand UIP on the sets on both sides.
Proof irrelevance already implies it. is UIP weaker than PI?*)
f_equal.
apply functional_extensionality_dep.
intros b₂.
destruct (B_R_tot _ _ a_R) as [btl btr].
specialize (btr b₂).
destruct btr as [b₁ br].
eapply (Hind b₁ _ br );[].
clear Hind.
apply inj_pair2 in H12. subst.
(* inj_pair2 depends on proof irrelevance, or at least UIP in A₁.
In the global translation, in GoodRel, we can demand UIP on the sets on both sides*)
Fail apply X2.
(* a_R1 came from inversion ir2 and a_R came from induction ir1.*)
pose proof (A_R_irrel _ _ a_R a_R1).
subst. auto.
Defined.
Print Assumptions IWT_R_iso_half.
Lemma IWT_R_iso
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(A_R_iso : oneToOne A_R)
(A_R_irrel : relIrrUptoEq A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
:
oneToOne (IWT_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
split.
- apply IWT_R_iso_half; auto.
- pose proof (@IWT_R_iso_half _ _ (rInv I_R) _ _ (rInv A_R) _ _ (rPiInv B_R)
AI₂ AI₁ ltac:(rInv)
BI₂ BI₁ ltac:(rInv) _ _ i_R
ltac:(rInv) ltac:(rInv) ltac:(rInv)
) as Hh.
unfold TotalHeteroRelHalf, R_Pi, rPiInv, rInv in *.
revert Hh. clear.
intros ? ? ? ? p1 p2.
unfold oneToOneHalf in Hh.
specialize (Hh _ _ _ (IWT_R_inv _ _ p1) (IWT_R_inv _ _ p2)).
assumption.
Qed.
Print Assumptions IWT_R_iso.
Require Import Coq.Logic.JMeq.
Require Import Coq.Program.Equality.
Definition rellIrrUptoEq5 {A B : Type} (R : A -> B -> Type) :=
forall a1 b1 a2 b2 (p1 : R a1 b1) (p2 : R a2 b2) (_:a1=a2) (_:b1=b2),
@EqdepFacts.eq_dep _ (fun p => R (fst p) (snd p)) (a1,b1) p1 (a2,b2) p2 .
Lemma rellIrrUptoEq5_implies {A B : Type} (R : A -> B -> Type):
rellIrrUptoEq5 R -> relIrrUptoEq R .
Proof.
intros H4 ? ? ? ?.
specialize (H4 _ _ _ _ p1 p2 eq_refl eq_refl).
apply eq_dep_eq in H4.
auto.
Qed.
Unset Implicit Arguments.
Inductive unicity (A I:Type) (f: A-> I) : I-> Type :=
uni : forall a, unicity A I f (f a).
Lemma unicity_prove (A I:Type) (f: A-> I) i (p: unicity A I f i):
@sigT A (fun a => @sigT (i=f a) (fun e => uni _ _ _ a =@transport _ _ _ (unicity A I f) e p)).
Proof using.
destruct p.
exists a. exists eq_refl. reflexivity.
Qed.
Require Import Coq.Logic.EqdepFacts.
Lemma JMeq_eq_dep :
forall U (P:U->Type) p q (x:P p) (y:P q),
p = q -> JMeq x y -> eq_dep U P p x q y.
Proof.
intros.
destruct H.
apply JMeq_eq in H0 as ->.
reflexivity.
Qed.
Require Import SquiggleEq.tactics.
Require Import SquiggleEq.LibTactics.
Lemma IWT_R_irrel
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(A_R_irrel : relIrrUptoEq A_R) (* to prove irrel, we only need irred (and some axioms) *)
:
relIrrUptoEq (IWT_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
intros ? ? ?.
induction p1 as [ ? ? ? ? ? ? Hind].
intros ?.
dependent destruction p2.
clear x2.
pose proof (@JMeq_eq_dep _ (fun i => (IWT I₁ A₁ B₁ AI₁ BI₁ i)) _ _ _ _ x0 x3)
as Heq.
apply (@EqdepFacts.f_eq_dep _ _ _ _ _ _ _ (getA I₁ A₁ B₁ AI₁ BI₁)) in Heq.
simpl in Heq.
apply eq_dep_non_dep in Heq.
subst. clear x0.
apply JMeq_eq in x3.
(* the same for a₂0 *)
pose proof (@JMeq_eq_dep _ (fun i => (IWT I₂ A₂ B₂ AI₂ BI₂ i)) _ _ _ _ x1 x4)
as Heq.
apply (@EqdepFacts.f_eq_dep _ _ _ _ _ _ _ (getA I₂ A₂ B₂ AI₂ BI₂)) in Heq.
simpl in Heq.
apply eq_dep_non_dep in Heq.
subst. clear x1.
apply JMeq_eq in x4. subst.
pose proof (A_R_irrel _ _ a_R0 a_R). subst.
inverts x3 as x3.
apply inj_pair2 in x3. subst.
inverts x4 as x4.
apply inj_pair2 in x4. subst.
apply JMeq_eq in x. subst.
f_equal.
apply functional_extensionality_dep.
intros b₁.
apply functional_extensionality_dep.
intros b₂.
apply functional_extensionality_dep.
intros b_R.
apply Hind.
Qed.
Print Assumptions IWT_R_irrel.
(*
proof_irrelevance : forall (P : Prop) (p1 p2 : P), p1 = p2
functional_extensionality_dep : forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g
JMeq_eq : forall (A : Type) (x y : A), x ~= y -> x = y (* this may not be needed *)
*)
Definition IWP_ind2 : forall (I A : Type) (B : A -> Type) (AI : A -> I) (BI : forall a : A, B a -> I)
(P : forall i : I, IWP I A B AI BI i -> Prop),
(forall (a : A) (i : forall b : B a, IWP I A B AI BI (BI a b)),
(forall b : B a, P (BI a b) (i b)) -> P (AI a) (iwp I A B AI BI a i)) ->
forall (i : I) (i0 : IWP I A B AI BI i), P i i0
:=
fun (I A : Type) (B : A -> Type) (AI : A -> I) (BI : forall a : A, B a -> I)
(P : forall i : I, IWP I A B AI BI i -> Prop)
(f : forall (a : A) (i : forall b : B a, IWP I A B AI BI (BI a b)),
(forall b : B a, P (BI a b) (i b)) -> P (AI a) (iwp I A B AI BI a i)) =>
fix F (i : I) (i0 : IWP I A B AI BI i) {struct i0} : P i i0 :=
match i0 as i2 in (IWP _ _ _ _ _ i1) return (P i1 i2) with
| iwp _ _ _ _ _ a i1 => f a i1 (fun b : B a => F (BI a b) (i1 b))
end.
(*IWP_RP above was better because less extras were needed.
In particular A_R iso and B_R iso and irrel was not needed.
So, we should have the translation of [Prop] and [Type] be the same.
However, we should separately translate inductives in [Type] and inductives in [Prop].
Similarly, we should separately translate functions into Type and functions into Prop
Without Proof irrelevance, IWP_R is stronger than Prop_R2. It says
that the 2 proofs use the same constructors and those constructors "similar" arguments.
Prop_R2 says nothing about the 2 proofs, besides their existence.
However, with proof irrelevance, the difference is irrelevant.
However, as mentioned above, treating Prop specially, as in IWP_RP, results
in much fewer extrans, and this riddance may snowball upstream
and result in much stronger free theorems.*)
Lemma IWP_R_total
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
(* extra*)
(I_R_iso : oneToOne I_R) (*total Hetero not needed*)
(irrel : relIrrUptoEq I_R)
(A_R_tot : TotalHeteroRel A_R)
(B_R_tot : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), TotalHeteroRel (B_R _ _ a_R))
(B_R_iso : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), oneToOne (B_R _ _ a_R))
(B_R_irrel : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂), relIrrUptoEq (B_R _ _ a_R))
:
TotalHeteroRelHalf (IWP_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
intros.
rename H into i₁.
rename H0 into i₂.
intros Hyp.
revert i_R.
revert i₂.
induction Hyp as [a₁ Ha Hb] using IWP_ind2.
pose proof (fst A_R_tot a₁) as Haa.
intros.
destruct Haa as [a₂ a_R].
pose proof (AI_R _ _ a_R) as ir2.
pose proof ((proj1 I_R_iso) _ _ _ i_R ir2) as Hir2.
subst.
specialize (fun b₁ b₂ b_R => Hb b₁ (BI₂ a₂ b₂) (BI_R _ _ a_R _ _ b_R)).
specialize (irrel _ _ i_R (AI_R a₁ a₂ a_R)). subst.
clear ir2.
exists (iwp I₂ A₂ B₂ AI₂ BI₂ a₂
(fun b₂ => let b1p := (snd (B_R_tot _ _ a_R) b₂)
in (projT1 (Hb _ b₂ (projT2 b1p))))).
constructor.
intros. destruct (snd (B_R_tot a₁ a₂ a_R)).
unfold rInv in *.
simpl.
destruct (Hb x b₂ r). simpl in *. clear Hb.
pose proof ((proj2 (B_R_iso _ _ _)) _ _ _ b_R r). subst.
pose proof (B_R_irrel _ _ _ _ _ r b_R). subst.
exact i; fail.
Fail idtac.
Abort. (* done but not needed. see comments at the beginning*)
(*
Require Import Coq.Logic.JMeq.
Require Import Coq.Program.Equality. *)
Require Import Coq.Logic.FunctionalExtensionality.
Definition IWP_R_rect :=
fun (I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(P : forall (i : I₁) (i0 : I₂) (i1 : I_R i i0) (i2 : IWP I₁ A₁ B₁ AI₁ BI₁ i)
(i3 : IWP I₂ A₂ B₂ AI₂ BI₂ i0),
IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R i i0 i1 i2 i3 -> Prop)
(f : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂)
(i : forall b : B₁ a₁, IWP I₁ A₁ B₁ AI₁ BI₁ (BI₁ a₁ b))
(i0 : forall b : B₂ a₂, IWP I₂ A₂ B₂ AI₂ BI₂ (BI₂ a₂ b))
(i1 : forall (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂),
IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R
(BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R)
(i b₁) (i0 b₂)),
(forall (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂),
P (BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R) (i b₁) (i0 b₂) (i1 b₁ b₂ b_R)) ->
P (AI₁ a₁) (AI₂ a₂) (AI_R a₁ a₂ a_R) (iwp I₁ A₁ B₁ AI₁ BI₁ a₁ i)
(iwp I₂ A₂ B₂ AI₂ BI₂ a₂ i0)
(iwp_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R a₁ a₂ a_R i i0
i1)) =>
fix
F (y : I₁) (y0 : I₂) (y1 : I_R y y0) (i : IWP I₁ A₁ B₁ AI₁ BI₁ y)
(i0 : IWP I₂ A₂ B₂ AI₂ BI₂ y0)
(i1 : IWP_R I₁ I₂ I_R A₁ A₂ A_R B₁ B₂ B_R AI₁ AI₂ AI_R BI₁ BI₂ BI_R y y0 y1 i i0) {struct
i1} : P y y0 y1 i i0 i1 :=
match
i1 as i4 in (IWP_R _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y2 y3 y4 i2 i3)
return (P y2 y3 y4 i2 i3 i4)
with
| iwp_R _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a₁ a₂ a_R i2 i3 i4 =>
f a₁ a₂ a_R i2 i3 i4
(fun (b₁ : B₁ a₁) (b₂ : B₂ a₂) (b_R : B_R a₁ a₂ a_R b₁ b₂) =>
F (BI₁ a₁ b₁) (BI₂ a₂ b₂) (BI_R a₁ a₂ a_R b₁ b₂ b_R) (i2 b₁) (i3 b₂) (i4 b₁ b₂ b_R))
end.
(* this should be a trivial consequence of proof irrelevance *)
Lemma IWP_R_iso
(I₁ I₂ : Type) (I_R : I₁ -> I₂ -> Type) (A₁ A₂ : Type) (A_R : A₁ -> A₂ -> Type)
(B₁ : A₁ -> Type) (B₂ : A₂ -> Type)
(B_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> B₁ H -> B₂ H0 -> Type)
(AI₁ : A₁ -> I₁) (AI₂ : A₂ -> I₂)
(AI_R : forall (H : A₁) (H0 : A₂), A_R H H0 -> I_R (AI₁ H) (AI₂ H0))
(BI₁ : forall a : A₁, B₁ a -> I₁) (BI₂ : forall a : A₂, B₂ a -> I₂)
(BI_R : forall (a₁ : A₁) (a₂ : A₂) (a_R : A_R a₁ a₂) (H : B₁ a₁) (H0 : B₂ a₂),
B_R a₁ a₂ a_R H H0 -> I_R (BI₁ a₁ H) (BI₂ a₂ H0))
(H : I₁) (H0 : I₂) (i_R : I_R H H0)
:
oneToOne (IWP_R _ _ I_R _ _ A_R _ _ B_R _ _ AI_R _ _ BI_R _ _ i_R).
Proof using.
split;intros ? ? ? ? ?; apply proof_irrelevance.
Qed.
Require Import Coq.Logic.JMeq.