-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathdemo.py
156 lines (126 loc) · 5.33 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2023 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: [email protected]
import argparse
import os
import random
from glob import glob
from pathlib import Path
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import trimesh
from insightface.app.common import Face
from insightface.utils import face_align
from loguru import logger
from skimage.io import imread
from tqdm import tqdm
from configs.config import get_cfg_defaults
from datasets.creation.util import get_arcface_input, get_center, draw_on
from utils import util
from utils.landmark_detector import LandmarksDetector, detectors
def deterministic(rank):
torch.manual_seed(rank)
torch.cuda.manual_seed(rank)
np.random.seed(rank)
random.seed(rank)
cudnn.deterministic = True
cudnn.benchmark = False
def process(args, app, image_size=224, draw_bbox=False):
dst = Path(args.a)
dst.mkdir(parents=True, exist_ok=True)
processes = []
image_paths = sorted(glob(args.i + '/*.*'))
for image_path in tqdm(image_paths):
name = Path(image_path).stem
img = cv2.imread(image_path)
bboxes, kpss = app.detect(img)
if bboxes.shape[0] == 0:
logger.error(f'[ERROR] Face not detected for {image_path}')
continue
i = get_center(bboxes, img)
bbox = bboxes[i, 0:4]
det_score = bboxes[i, 4]
kps = None
if kpss is not None:
kps = kpss[i]
face = Face(bbox=bbox, kps=kps, det_score=det_score)
blob, aimg = get_arcface_input(face, img)
file = str(Path(dst, name))
np.save(file, blob)
processes.append(file + '.npy')
cv2.imwrite(file + '.jpg', face_align.norm_crop(img, landmark=face.kps, image_size=image_size))
if draw_bbox:
dimg = draw_on(img, [face])
cv2.imwrite(file + '_bbox.jpg', dimg)
return processes
def to_batch(path):
src = path.replace('npy', 'jpg')
if not os.path.exists(src):
src = path.replace('npy', 'png')
image = imread(src)[:, :, :3]
image = image / 255.
image = cv2.resize(image, (224, 224)).transpose(2, 0, 1)
image = torch.tensor(image).cuda()[None]
arcface = np.load(path)
arcface = torch.tensor(arcface).cuda()[None]
return image, arcface
def load_checkpoint(args, mica):
checkpoint = torch.load(args.m)
if 'arcface' in checkpoint:
mica.arcface.load_state_dict(checkpoint['arcface'])
if 'flameModel' in checkpoint:
mica.flameModel.load_state_dict(checkpoint['flameModel'])
def main(cfg, args):
device = 'cuda:0'
cfg.model.testing = True
mica = util.find_model_using_name(model_dir='micalib.models', model_name=cfg.model.name)(cfg, device)
load_checkpoint(args, mica)
mica.eval()
faces = mica.flameModel.generator.faces_tensor.cpu()
Path(args.o).mkdir(exist_ok=True, parents=True)
app = LandmarksDetector(model=detectors.RETINAFACE)
with torch.no_grad():
logger.info(f'Processing has started...')
paths = process(args, app, draw_bbox=False)
for path in tqdm(paths):
name = Path(path).stem
images, arcface = to_batch(path)
codedict = mica.encode(images, arcface)
opdict = mica.decode(codedict)
meshes = opdict['pred_canonical_shape_vertices']
code = opdict['pred_shape_code']
lmk = mica.flame.compute_landmarks(meshes)
mesh = meshes[0]
landmark_51 = lmk[0, 17:]
landmark_7 = landmark_51[[19, 22, 25, 28, 16, 31, 37]]
dst = Path(args.o, name)
dst.mkdir(parents=True, exist_ok=True)
trimesh.Trimesh(vertices=mesh.cpu() * 1000.0, faces=faces, process=False).export(f'{dst}/mesh.ply') # save in millimeters
trimesh.Trimesh(vertices=mesh.cpu() * 1000.0, faces=faces, process=False).export(f'{dst}/mesh.obj')
np.save(f'{dst}/identity', code[0].cpu().numpy())
np.save(f'{dst}/kpt7', landmark_7.cpu().numpy() * 1000.0)
np.save(f'{dst}/kpt68', lmk.cpu().numpy() * 1000.0)
logger.info(f'Processing finished. Results has been saved in {args.o}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MICA - Towards Metrical Reconstruction of Human Faces')
parser.add_argument('-i', default='demo/input', type=str, help='Input folder with images')
parser.add_argument('-o', default='demo/output', type=str, help='Output folder')
parser.add_argument('-a', default='demo/arcface', type=str, help='Processed images for MICA input')
parser.add_argument('-m', default='data/pretrained/mica.tar', type=str, help='Pretrained model path')
args = parser.parse_args()
cfg = get_cfg_defaults()
deterministic(42)
main(cfg, args)