-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp_tutorial_part_2.yaml
55 lines (55 loc) · 1.83 KB
/
mlp_tutorial_part_2.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
!obj:pylearn2.train.Train {
dataset: &train !obj:pylearn2.datasets.mnist.MNIST {
which_set: 'train',
start: 0,
stop: %(train_stop)i
},
model: !obj:pylearn2.models.mlp.MLP {
layers: [
!obj:pylearn2.models.mlp.Sigmoid {
layer_name: 'h0',
dim: %(dim_h0)i,
sparse_init: 15,
}, !obj:pylearn2.models.mlp.Softmax {
layer_name: 'y',
n_classes: 10,
irange: 0.
}
],
nvis: 784,
},
algorithm: !obj:pylearn2.training_algorithms.bgd.BGD {
batch_size: 10000,
line_search_mode: 'exhaustive',
conjugate: 1,
updates_per_batch: 10,
monitoring_dataset:
{
'train' : *train,
'valid' : !obj:pylearn2.datasets.mnist.MNIST {
which_set: 'train',
start: 50000,
stop: %(valid_stop)i
},
'test' : !obj:pylearn2.datasets.mnist.MNIST {
which_set: 'test',
}
},
termination_criterion: !obj:pylearn2.termination_criteria.And {
criteria: [
!obj:pylearn2.termination_criteria.MonitorBased {
channel_name: "valid_y_misclass"
},
!obj:pylearn2.termination_criteria.EpochCounter {
max_epochs: %(max_epochs)i
}
]
}
},
extensions: [
!obj:pylearn2.train_extensions.best_params.MonitorBasedSaveBest {
channel_name: 'valid_y_misclass',
save_path: "%(save_path)s/mlp_best.pkl"
},
]
}